
MATLAB, R and S-PLUS Functions for
Functional Data Analysis

J. O. Ramsay, McGill University

November 24, 2005

1

Contents

2

1 Introduction

1.1 The Goals of these Notes

These notes are designed to accompany the books Functional Data Analysis
(2005) and Applied Functional Data Analysis (2002) by J. O. Ramsay and B.
W. Silverman. They describe some objects and functions that can be used to
implement and simplify various types of functional data analysis, and their
use is illustrated with some of the data described there. It is hardly necessary
to be familiar with all of the book before using this software. Indeed, a useful
strategy in developing a feel for how these techniques work might be to read
the introductory chapter, with perhaps some browsing elsewhere, and then
use this software to perform some of the analyses, before going on to read in
detail.

In these notes I will always abbreviate the noun functional data analysis
by FDA, and the adjective functional data by FD.

Our first objective in developing this software was to help a prospective
FDA get off the ground. I have not tried to develop sophisticated algorithms
able to deal with almost any eventuality, but rather simple methods that
invite extension and other modifications. To this end I have tried to keep
the modules small and readable, and I have not strayed much beyond the
material and examples in the text. However, it must be admitted that each
new application seems to call for an extension of some technique, and things
do tend to become more complex as time rolls on.

1.2 The Two Languages

The software has been developed for both the MATLAB language and R/S-
PLUS family. In general I will not distinguish between R and S-PLUS as
languages, and will mostly refer to the latter. I will, however, mention from
time to time special issues for R users. For example, in R the splines

package must be loaded before using a B-spline basis, whereas in S-PLUS
nothing particular needs to be done.

We do not wish to discuss any superiority of either programming language
over the other, although to be sure each language has strengths that one must
work a bit to implement in the other. But on the whole, the two languages
are similar, and I have found that moving code from one to the other has

3

not been difficult.
We have tried to use the same names for functions in both languages, but

note that compound names are constructed using an underscore in MATLAB,
as in smooth basis, and using a period in R/S-PLUS, as in smooth.basis.

We will use typewriter script for names of functions and keywords in
either language, as I have already done for splines and smooth basis.

1.3 Object-oriented programming

Both languages have a capacity for object-oriented programming. This makes
both developing and using these functions much easier, and consequently
object-oriented programming has been used throughout. However, because
the object-oriented programming capability of MATLAB is fairly rudimen-
tary, I have tried not to use any feature in S-PLUS that could not be repro-
duced in MATLAB.

What is object-oriented programming? Both languages have the capac-
ity to define a single compound variable that can contain several pieces of
information of varying types, such as scalars, vectors, names, strings, and so
forth. These are list variables (S-PLUS) or struct variables (MATLAB).

A class is a specification or blueprint for one of these variables that pre-
specifies its structure. That is, a class specifies a name for a blueprint,
called its type, and also defines a name for each piece of information in the
compound variable. Assigning a class name to a list or struct variable allows
the language’s interpreter to know in advance what its internal elements (S-
PLUS) or fields (MATLAB) are. These internal elements are often called
slots in the literature object-oriented programming.

Objects are specific variables created so as to conform to the blueprint or
specification in a specific class.

For example, functions are expressed in functional data analysis as linear
combinations of basis functions, as in

x(t) =
K∑

k=1

ckφk(t)

A functional data class specifies a list variable in S-PLUS for a struct

variable in MATLAB that contains at a minimum the two essential pieces of
information needed to define a function expressed in this way:

4

• the basis function system defining the basis functions φk(t)

• the vector, matrix, or array containing the coefficients ck

Consequently, the functional data class specifies that a functional data
object will have at least these two pieces of information:

• an array of numbers that are the coefficients for basis function expan-
sions, and

• another object called a basis object that specifies a basis for the ex-
pansion.

The name or type of the functional data blueprint is fd, and these two
members are called coef and basis, respectively. More will be said about
both the fd and basis classes below, and these classes and objects that they
define are introduced here as a preliminary exposure to these essential ideas.

One consequence of using classes and objects is that the same function
name can be used for many different types of things. This is called over-
loading a function name. So, for example, we can provide a plot function for
functional data objects that works because the interpreter is able to recognize
that the argument in a call like plot(fdobj) is an object of this class, and
then will use the appropriate special purpose plotting function. The user
doesn’t have to know what that special function is, since the interpreter
takes care of this. Consequently one can simply use plot over and over
again, sometimes for regular variables, sometimes for fd objects or basis

objects, and sometimes for other objects as well.
We will also use overloading for such familiar functions as mean, print,

var, and even for operations such as +/- and for specifying subsets of arrays.
See Section 2 for a more detailed description of objects.

In fact, so important is the object concept, that both languages have
come to define every variable in terms of a class, so that even user-defined
new variables are automatically defined an appropriate default class attribute
if the user does not do so.

Fortunately, there are now many fine books to support the use of both lan-
guages and to introduce you to object oriented programming. I recommend
that Matlab users not already familiar with the object-oriented features in
these languages first read the few chapters on this topic in Hanselman and

5

Littlefield (2005) (MATLAB). On the R and S-PLUS side there are Ven-
ables (2004) and Venables and Ripley (2000) and the extensive manuals and
documentation accompanying the distribution of these two languages by the
R-Project Group and Insightful Corporation, respectively.

Insightful Corporation has also released their own functional data analysis
module, which may be downloaded through their website www.insightful.com.
This module is supported by Clarkson, Fraley, Gu and Ramsay (2005). This
module has important features not available in the set of functions described
in this manual. For example, the functions are integrated with the dataframe
class, making it easy to combine multivariate and functional data analyses
and to benefit from the other useful features of dataframes. I recommend
to S-PLUS users that the functions described here by supplemented by this
module.

1.4 An Overview of the Steps in an FDA

A typical FDA tends to include most of the following steps:

1. The raw data are collected, cleaned, and organized. I assume that
there is a one-dimensional argument, that I will denote by t. As a
rule functions of t are observed only at discrete sampling values tj, j =
1, . . . , n, and these may or may not be equally spaced. But there may
well be more than one function of t being observed, as would be the
case for handwriting data, where there are X(t)-, Y (t)-, and possibly
Z(t)-coordinate functions.

We assume that there may also be replications of each function, indexed
by i = 1, . . . , N. Each replicate is referred to as an observation, since
we want to treat the discrete values as a unitary whole. While most
studies will have the same set of argument values or sampling points tj
for all replications, this is not required, and the more general notation
for these values, tij, j = 1, . . . , ni, might be required.

2. The data are next converted to functional form. By this is meant that
the raw data for observation i are used to define a function xi that can
be evaluated at all values of t over some interval. In order to do this, a
basis must first be specified, which is system of basic functions which are
combined linearly to define actual functions. The data are organized

6

into a functional data object, often using the function data2fd, or
perhaps the function smooth basis (MATLAB) or smooth.basis (S-
PLUS), and all of these functions require the specification of a basis
object.

3. Next a variety of preliminary displays and summary statistics are de-
veloped. These can be produced by special plotting and summary func-
tions that use functional data objects as input, such as plot, mean,
and var.

4. The functions may also need to be registered or aligned, in order to
have important features found in each curve occur at roughly the same
argument values. This process is said to separate vertical amplitude
variation from horizontal or phase variation. I provide both a landmark
registration algorithm and a continuous registration algorithm to do
this.

5. Exploratory analyses are carried out on the registered data. The main
techniques discussed in the book are

• Principal components analysis (pca)

• Canonical correlation analysis (cca)

• Principal differential analysis (pca)

6. Models are constructed for the data. These models may in the form of a
functional linear model, using fRegress, or in the form of a differential
equation, using pda.

7. The models are evaluated, often with the help of special plotting and
summary functions adapted to the particular analysis.

1.5 An Overview of these Notes

Section 2 describes the essential classes needed to use this software. The two
most important are:

• the basis class used to define the functional data object, and

7

• the fd class defining objects that contain samples of functional obser-
vations, and that are the primary input to the various MATLAB and
S-PLUS functions defined in the next section.

A bifd class is defined for functions of two variables. Two other classes, the
fdPar and Lfd class, are used in more advanced applications.

Section 3 provides details about the functions that will use these objects
to do various functional data analyses. These functions

• create functional data objects by smoothing or interpolating the raw
discrete data,

• plot and summarize functional data objects,

• align prominent curve features by registration,

• compute functional versions of elementary statistical descriptions,

• perform exploratory analyses, such as principal components analysis
(PCA), canonical correlation analysis (CCA), and principal differential
analysis (PDA),

• fit linear models where the independent and/or dependent variables are
functional, and

• manipulate functional data objects using such basic arithmetical op-
erations as addition, multiplication, square-rooting, exponentiation, as
well as selecting subsets, and so forth.

Descriptions of the functions described in this section, as well as other func-
tions in the package, are also available by using help, as in help(data2fd)

in S-PLUS or help data2fd in MATLAB. In both languages, the code itself
for each function also contains a fair amount of detail at the beginning de-
scribing the purpose of the function, each of the arguments, and the results
returned.

Section 4 provides some useful information about installing the package.
Section ?? shows how functional data objects and functions are used to

carry out some of the analyses that appear in the text. These examples
are not at all exhaustive, but only intended to get you started. For further

8

examples in more sophisticated situations, go to the web site
www.functionaldata.org.

Section ?? offers some notes specific to monotone smoothing.

1.6 An Important Disclaimer

These notes are not updated each time a change is made to a function.
Although the instructions on how to use the functions that are in these notes
won’t have changed too much, it is always wise to compare the notes against
what is displayed by the help command in the language to be sure that the
notes are still up to date.

9

2 More on FDA Objects

In this section I define the five objects that we shall use in our FDA’s. First,
I go into more detail on the nature of an object.

2.1 What is an Object in MATLAB or S-PLUS?

An object in S-PLUS is a list variable having a class attribute. In MAT-
LAB, it is a struct variable having a class attribute.

A list or a struct, in turn, is a collection of data structures such as
scalars, vectors, matrices, other lists, objects, and so forth, referred to as the
members, fields, or slots of the list or struct.

For example, a fd object is a struct variable in MATLAB that contains
at least two slots: a coefficient matrix, and a basis object. In S-PLUS,
it is a list variable that contains these two elements. The type or name
for the class is fd. A basis object is in turn a list variable or a struct

variable depending on the language that contains (i) a string slot for the type
of basis, (ii) a vector slot for the range of the argument, (iii) a scalar slot for
the number of basis functions, and (iv) a vector slot for the fixed parameters
defining the basis.

It is the presence of a class type or name that turns a list or a struct

into an object. This class name is used by MATLAB or S-PLUS to select an
appropriate function from among a collection of possibilities. The class name
is, effectively, a guarantee to the language that the list or struct will have a
fixed pre-specified internal structure. That is, given its name, the interpreter
will know exactly how many slots there are, have a name for each slot, and
what the properties of the information in each slot are. Consequently, the
language knows exactly what can and cannot be done with the object.

Note that the term class refers to the blueprint for the list or struct,
and the term object refers to a specific data structure constructed using this
blueprint. To illustrate, “hamburger” is a blueprint specifying that ground
beef shall be placed between two round breads, and is therefore like a class,
whereas the actual hamburger that you are about to eat is like an object.
Because you know in advance what the structure of a hamburger is, you
won’t expect to pour milk on it.

Each object has a function associated with it that creates the object,
called its constructor function, and I have used the prefix create to indicate

10

such a function. For example, we can create a basis of the Fourier type by
using the function create fourier basis in MATLAB or
create.fourier.basis in S-PLUS. This ensures that the object has the
correct structure.

Essentially the creation process is one of organizing the required infor-
mation into the required list structure, and assigning the class name to the
list. The creation functions also assign names to the members in the list

for your convenience when you want to get at them specifically rather than
at the whole list. The object creation functions can also supply some of the
members in the list by default, so that you need not necessarily provide all
the members that the object requires.

2.2 The three essential classes for FDA

Here, then, are the three most important classes that we will need. There
are others, but nearly every FDA will make use of these three classes, and
certainly of the first two.

Here I only describe the most essential slots or pieces of information.
Later I will cover additional slots that may be specified for more advanced
applications.

2.2.1 The basis class

Before you can convert raw discrete data into a functional data object with
these functions, you must specify a basis. A basis is a system of primitive
functions that are combined linearly to approximate actual functions. An
example is successive powers of an argument t, linear combinations of which
form polynomials. A more useful example is the unit function 1 and suc-
cessive pairs of sine and cosine functions with frequencies that are integer
multiples of a base period that make up a Fourier series.

The FDA text used this basis expansion method of defining a function
exclusively, even though there are certainly other approaches. This was to
impose both a uniformity of approach for reasons of simplicity, and to enable
us to use roughness penalty methods. These functions continue this strategy,
and at this point you may feel like re-reading Chapters 3, 4 and 5 in the FDA
text (second edition).

11

Thus, a function xi is represented by a basis function expansion, which
is defined by a set of basis functions, φk, k = 1, . . . , K. In this approach, a
functional observation xi is expressed as

xi(t) =
K∑

k

cikφk(t) . (1)

When these basis functions φk are specified, then the conversion of the data
into a functional data object involves computing and storing the coefficients
of the expansion, cik, into a coefficient matrix.

As was is indicated in Chapter 3, there are many bases possible, and
many considerations to take into account. I provide a number of the more
common bases:

• the Fourier basis, typically used for periodic data,

• the B-spline basis, typically used for non-periodic data,

• the constant basis, a single basis function whose value is 1 everywhere,
used to define constant functions and to convert ordinary univariate
scalar observations into functional data form,

• the exponential basis, a set of exponential functions, eαkt, each with a
different rate parameter αk,

• the polygonal basis, defining a function made up of straight line seg-
ments,

• the polynomial basis, consisting of the powers of t: 1, t, t2, t3, . . .,

• the power basis, consisting of a sequence of possibly non-integer powers,
including negative powers, of an argument t that is usually required to
be positive.

Of these basis functions, the first two are by far the most important, and can
be used to carry out almost all analyses described in the book. Each of these
functions has its own constructor function, such as create bspline basis

in MATLAB or its counterpart create.bspline.basis in S-PLUS.
We also hope that users with special bases in mind that I have not pro-

vided will discover from the code how they may add their own basis systems.

12

In specifying a basis, we must specify four things. That is, there are four
slots in the basis class:

• the type of the basis. This is a string such as ‘bspline’, ‘fourier’, ‘con-
stant’ and so on that names the basis. (Note: S-PLUS uses double
quotes for strings.)

• the range of argument values, specifying the lower and upper limits on
argument values,

• the number of basis functions, and

• the parameter values defining the basis. The number and meaning of
the parameter values will depend on the nature of the basis. For ex-
ample, a Fourier basis requires only a single positive number indicating
the base period, a B-spline basis needs a strictly increasing sequence of
knot values, but a constant basis doesn’t need any parameters at all.

However, a particular call to a create function setting up a basis object
may not actually specify all four of these pieces of information, and when
unspecified, each of them has a default setting that is then automatically
applied.

An important technical note for R/S-PLUS programmers: Unfor-
tunately, these two languages already used a class with the name
basis well before I began to work on these functions. I only
discovered this fact in 2005, which certainly suggests that this
matter is unlikely to affect your own work with these functions,
since it didn’t bother mine for eight years! Nevertheless, it is not
cool to use the same class name for two quite different ideas, and
in the current FDA code for R/S-PLUS, I use the class name
basisfd rather than basis. This will only affect your work if
you begin to program your own functions, and then only if you
design new types of bases other than the ones described here.
If you want to test whether an object is of the basisfd class,
you can use the function is.basis() that returns T if it is and
F if not. Of course, you may also use inherits(objectname,

"basisfd") for the same purpose. But, unless you get into basis
design, you are unlikely to run into trouble. Normally, you will

13

only create basis objects using the create functions. I will con-
tinue to use basis as the class name for all three languages in
these notes.

Details for each type of basis are given below.
Consequently, a basis object in S-PLUS is a list variable with four ele-

ments, or in MATLAB a struct variable with four slots. These slot names
are:

type: This is a string such as: fourier or bspline. A few variants of these
strings will also work, such as fou or bsp.

rangeval: This is a vector containing two values: the initial and final values
of t defining the interval over which a functional data object can be
evaluated. This interval need not include all the tj values associated
with the discrete data, and it may extend beyond them, but for sure
it must contain enough tj values to define the basis function expansion
(1) properly.

nbasis: This is an integer specifying the number of basis functions to be
used in the expansion, indicated by K in (1).

params: A vector containing the parameters defining the basis. The con-
tents of this vector depend on the type of basis.

The first three slots don’t vary in type or size for different bases, the
the last params basis is a vector with a length and meaning that has to be
specified separately for each basis type. The details are:

Fourier basis: for a fourier basis, the params entry contains only the base
period T for the sine/cosine series. The basis functions are:

1, sin ωt, cos ωt, sin 2ωt, cos 2ωt, . . .

where ω = 2π/T. Note that because the constant is included, the num-
ber of basis functions, nbasis, should be odd if you want to completely
allow for arbitrary phase variation. In fact, if an even number is spec-
ified in the create.fourier.basis function, it is changed to the next
odd number. By default, if the period T is not specified, the period is
set to the width of the interval defined in the rangeval entry.

14

B-spline basis: for a basis of type bspline, the params vector contains an
increasing knots or break points defining the B-spline functions. The
initial and final knots must be equal to the lower and upper limits in
rangeval entry, respectively. Note that the order of a B-spline basis
plus the number of interior knots equals the number of basis functions,
so that the order (degree of the piece-wise polynomials + 1) of these B-
splines will be equal to the value of the nbasis plus two entry minus the
number of elements in the params entry. In MATLAB code, norder
= nbasis - length(params) + 2. For example, if we use 11 break
values 0.0, 0.1, 0.2, . . . , 1.0 in the params slot, and 13 for the nbasis

slot, this implies that the order of the spline is 13 + 2 - 11 = 4 = 13
- 9. The order must be between 1 and 20. If the nbasis and params

slots determine a value outside of this range, the create.bspline.fd

S-PLUS function will terminate with an error message, and so will
the MATLAB create bspline fd function. Order 4 is a frequent
choice, implying piece-wise cubic polynomials, and this would mean
that nbasis = length(params) + 2. If no knot or break values are
specified, they are set up to partition the interval defined in rangeval

into equal-sized parts. If only the number of basis functions is specified
in addition to the range, the knots are equally spaced and the order
is 4. There is room for inconsistency here, of course, when all four
arguments are supplied, and if this happens, the norder slot value is
ignored.

Constant basis: No parameters are required.

Exponential basis: Each basis function is of the form

φk(t) = eαkt

and the params elements are the rate constants αk.

Polygonal basis: Polygonal functions are formed from straight line seg-
ments. Strictly speaking, these may also be considered as B-splines
of order 2. But because they are so handy, we provide a special class
for them. The params vector contains the junction points for the line
segments. These will usually be the sampling values tj for the raw data.

15

Monomial basis: Monomials are the integer powers of t, 1, t, t2, t3, The
params vector contains the sequence of powers to be used, and if not
provided, the sequence 0, 1, 2, . . . is used.

Polynomial basis: This is a minor variate of the monomial basis that may
occasionally be handy. It defines basis functions (t− c)j, j = 0, 1, 2, . . .
where c is a constant that shifts t to a new center. This can be impor-
tant for fitting polynomials to data where the origin is a long way from
the data. The params vector just contains the shift constant c.

Power basis: This is designed for positive argument values t only. The
parameters are a sequence of powers, which need not be integers and
may be negative.

A basis object can be set up by calling the generic function basis

in MATLAB or basisfd in S-PLUS described in detail in the next sec-
tion. But special purpose functions such as create.bspline.basis and
create.fourier.basis (S-PLUS) are generally more convenient, and as the
technical note above indicates, it is unlikely that you will have to use these
primitive basis creation functions unless you want to program new basis
types.

Okay, by now you’ve figured out that in S-PLUS function names
can be divided into sections with a period, and that in MATLAB
this is done using an underscore. So you can make the translation
into the other system yourself whenever I use either convention.
So from now on, I will only give a function name for one of the
two languages.

2.2.2 The functional data class: fd

With a basis in hand, we are now ready to actually set up functional data
object, or, to keep it short, fd objects. An fd object consists of a sample
of N FD observations. An FD observation, in turn, consists of one or more
functions. That is, an FD observation is either scalar- or vector-valued func-
tion according to the nature of the data. For example, the Berkeley growth
data for girls are a sample of 53 scalar functions, and the gait data involve
N = 39 bivariate FD observations, each consisting of a function for knee

16

angle and another for hip angle. We speak of the corresponding fd object
as having two functions, although it has 39 replications, each consisting of
two functions. When the function is multivariate, we normally expect that
all the function values are measurements of the same quantity, such as angle
for the gait data or position for the handwriting data.

An fd object is a list (S-PLUS) or a struct (MATLAB) with the class
attribute fd that contains three named slots. They are as follows, the names
being shown in bold type:

coef: This is either a 1-, 2- or 3-dimensional array depending on whether the
functions are scalar- or vector-valued and whether there is only one or
more than one replication. The dimensions of this array have meanings
as follows:

1. The first dimension corresponds to basis functions in the basis

entry described below. The length of this dimension must there-
fore be equal to K in (1) and to the nbasis slot in the basis object.
(The basis object has already been described above). That is,
for a specific replicate and function, there must be a coefficient for
each basis function.

2. The second dimension corresponds to replications. The length of
this dimension is N , the sample size. This may be 1, f course, if
there is only a single functional observation involved.

3. The third dimension, if required, corresponds to functions when
there are multiple functions of t involved. For example, for the
handwriting data in the book, the length of this dimension would
be 2 since these data have X- and Y-coordinates.

So, for example, if we use 7 fourier basis functions for the monthly
temperature data for the 35 Canadian weather stations described in
the text, the coef array will be 7 by 35. On the other hand, for the
20 samples of handwriting data, each described by an X- and a Y
coordinate, and where we are using 23 B-spline basis functions (say
with order 4 and 19 interior knots), the coef array will be 23 by 20 by
2.

basisobj: The second slot is the name of a basis object that has already
been set up by calling one of the create functions to provide the expan-

17

sion or representation of the functions, and that is described already
above. Note: earlier versions of the class used basis as the name of
this slot.

fdnames: This is a list in S-PLUS or a cell array in MATLAB with
three members, each being a string. These members provide labels
that are used in plotting and other routines to describe the arguments,
the replications, and the function values. The members are:

1. A string used to describe arguments. It might be something like
‘time’, for example. The value of the first member, if provided,
would be a character vector providing names for each argument
value.

2. A string describing replications. For the weather data, we might
use ‘Weather stations’.

3. A string to describe the values of the functions, such as ‘Deg C’

for the temperature data. When the functions are multivariate, it
is still the case that only a single string is required, since we are
usually working with functions that all reflect the same quantity.

A functional data analysis usually begins by constructing a fd object by
inputting raw discrete data along with the sampling argument values tj or
tij into the function data2fd or the function smooth basis described in the
next section. However, other ways of constructing functional data objects
are also described there.

In general, vector-valued fd objects are only used when the values of
the functions all mean the same things, such as angle for the gait data, or
spatial coordinates for functions defining spatial position. When functions
have different units, use multiple fd objects rather than a single vector-valued
object.

Our use of the term “object” and “observation” is consistent with how
multivariate data are described by software packages such as SAS and SPSS,
where an observation can be scalar or multivariate, and corresponds to the
row of a data matrix.

18

2.2.3 The bi-variate functional data class: bifd

We will sometimes need to set up functions of two variables. For example, a
variance function v(s, t) or a correlation function r(s, t) are functions of two
variables. So is the regression function β(s, t) in a linear model where both
the independent and dependent variables are functions.

An bifd object is defined by a single coefficient array, and a basis object
for each argument s and t. Consequently, the class defining an fd object has
four slots:

coef: This is either a 2-, 3-, or 4-dimensional array depending on whether the
functions are scalar- or vector-valued. The meanings of the dimensions
are the same as for fd objects, except that the first two dimensions now
correspond to basis functions. Thus, the dimensions are:

1. The first two dimensions corresponds basis functions in the ’sba-
sisobj’ and ’tbasisobj’ members for bifd list described below.
The length of each dimension must therefore be equal to nbasis

entry in the corresponding basis object named in the second and
third arguments.

2. The third dimension corresponds to replications. The length of
this dimension is N , the sample size. This may be, of course, 1,
and if there is no third dimension, this is assumed to be the case.

3. The fourth dimension, if required, corresponds to functions when
there are multiple functions of s and t. See the description of
the var.fd function for an example. If there are only either two
or three dimensions for the coef array, then only one variable is
assumed.

sbasisobj: The name of a basis object for the first argument s.

tbasisobj: The name of a basis object for the second argument t.

bifdnames: A list in S-PLUS or a cell array in MATLAB with three
members with the same specifications as above for the fd object.

It is unwise to use the name of a class as the name of a variable,
and especially in MATLAB. For example, if you use one of the

19

“create” functions described in the next section to create a basis
object with the name basis, you can make it impossible for MAT-
LAB to find the basis class and consequently to create new basis
objects. The error messages that result will not be helpful, either.
Similarly, don’t use fd, fdPar or Lfd as names for variables.

20

3 The more important FDA functions

This section describes a variety of MATLAB and S-PLUS functions that do
useful things during the course of an FDA. It is natural to classify these
functions in rough correspondence with the steps in an FDA described in
Section 1.4:

Object creation functions: These, already alluded to in the previous sec-
tion, create the four types of objects used as inputs to other functions.
Included in these are also two functions for actually computing basis
function values.

Data plotting and summary functions: These are for the most part sim-
ple; they have the same names as the functions used elsewhere in S-
PLUS and MATLAB: display, plot, print, summary along with
the subset selection operator []. But what they actually do depends
on the nature of the object supplied as an argument.

Smoothing functions: These functions smooth a functional data object of
the fd class. They include functions for estimating strictly positive,
strictly monotonic and probability density functions from data.

Registration functions: These are used to register or align functions prior
to a subsequent analysis.

FDA functions: These actually perform FDAs such as principal compo-
nents analysis, linear modeling, canonical correlation analysis, and
principal differential analysis.

We now detail the functions used to create the three types of objects
defined in Section 2.

3.1 basis and fd object creation functions

The first group of functions are for creating a basis object. The function
basisfd in S-PLUS or create basis fd in MATLAB is a generic function
for creating any basis, but it is usually more convenient to use one of the
specialized basis functions designed to create a basis of a specific type. I first
describe four of the basis-specific functions, and then the generic function.

21

In each description, I first specify the call to the function in the two
instances. The first will be for MATLAB, and second for S-PLUS. (So as not
to seem discriminating, I shall reverse this order in the subsection title.) In
each call, the initial arguments are required, but some of the later ones may
be optional. Note that S-PLUS syntax permits the specification of the default
value for these optional arguments in the function call, while MATLAB does
not. This is one area where S-PLUS is better.

The argument call is followed by a description of the function. This
description is broken down into parts, in much the same manner as the
documentation conventions used in S-PLUS. These parts are: Purpose, Ar-
guments, Returns, and Examples.

We will not attempt to describe the default values for all the arguments
that are optional in order to keep the summary both simple and useful at
the same time. To find out the last word, you should look at the code for
the function itself, and read the initial comment lines.

Note that where I use single quotes, as in ‘bspline’, for strings, the
S-PLUS language officially uses double quotes, "bspline", but actually, in
fact, works correctly with single quotes as well.

Keep in mind that the first function name in typewriter font specifies the
MATLAB call, and the second the S-PLUS call.

3.1.1 create.bspline.basis or create bspline basis

We begin with the most complex creation function, that for a B-spline basis.
If you can wade through this, the other functions will be easy. But then, B-
splines are complex structures, and it is precisely this complexity that gives
them their versatility and ensures an honoured place in our lexicon of bases.

create_bspline_basis(rangeval, nbasis, norder, breaks)

create.bspline.basis(rangeval, nbasis, norder=4, breaks=NULL)

Purpose: Create a B-spline basis object.

Arguments: rangeval: (required) A vector of length 2 containing the ini-
tial and final values of argument t defining the interval over which
the functional data object can be evaluated.

nbasis: (required) An integer variable specifying the number of basis
functions

22

norder: (optional) An integer specifying the order of B-splines. The
order of a B-spline is one higher than the degree of its piecewise
polynomial segments. The default order is 4, and this defines
splines that are piecewise cubic.

breaks: (optional) A vector specifying the break points defining the
B-spline. Also called knots, these are an increasing sequence of
junction points between piecewise polynomial segments. They
must satisfy breaks[1] = rangeval[1] and breaks[nbreaks]

= rangeval[2], where nbreaks is the length of breaks. There
must be at least 3 values in breaks.

There is a potential for inconsistency among arguments nbasis,
norder, and breaks. It is resolved as follows: If breaks is sup-
plied, nbreaks = length(breaks), and nbasis = nbreaks + norder

- 2, no matter what value for nbasis is supplied. If breaks is
not supplied, but nbasis is, nbreaks = nbasis - norder + 2,
and if this turns out to be less than 3, an error message results.
If neither breaks nor nbasis is supplied, nbreaks is set to 21.

Some applications may call for coincident knots; that is, a se-
quence of identical values in breaks. For each repeated knot value,
a degree of continuity is lost in the spline function at that value.

Returns: A list in S-PLUS or a struct in MATLAB with the basis

class attribute with members as above having names type, rangeval,
nbasis, and params, respectively. The params slot contains the values
in the breaks argument of the function.

3.1.2 create.fourier.basis or create fourier basis

create_fourier_basis(rangeval, nbasis, period)

create.fourier.basis(rangeval, nbasis, period)

Purpose: Create a fourier basis object.

Arguments: rangeval: (required) A vector of length 2 containing the ini-
tial and final values of argument t defining the interval over which
the functional data object can be evaluated.

23

nbasis: (required) An integer variable specifying the number of ba-
sis functions. If this is even, it will be increased by one, since
the fourier basis will always involve the constant function plus a
number of sine/cosine pairs.

period: (optional) The period of the most slowly varying sin and co-
sine functions. By default, this is the difference, called width,
between the values in rangeval.

Returns: A list in S-PLUS or a struct in MATLAB with the basis

class attribute with members as above having names type, rangeval,
nbasis, and params, respectively.

3.1.3 create.exponential.basis or create exponential basis

create_exponential_basis(rangeval, nbasis, rate)

create.exponential.basis(rangeval, nbasis, rate=width)

Purpose: Create an exponential basis object.

Arguments: rangeval: (required) A vector of length 2 containing the ini-
tial and final values of argument t defining the interval over which
the functional data object can be evaluated.

nbasis: (required) An integer variable specifying the number of basis
functions.

rate: (required) A vector of nbasis rate constants λj for the basis
functions eλjt.

Returns: A list in S-PLUS or a struct in MATLAB with the basis

class attribute with members as above having names type, rangeval,
nbasis, and params, respectively.

3.1.4 create.power.basis or create power basis

create_power_basis(rangeval, nbasis, power)

create.power.basis(rangeval, nbasis, power)

Purpose: Create an power basis object.

24

Arguments: rangeval: (required) A vector of length 2 containing the ini-
tial and final values of argument t defining the interval over which
the functional data object can be evaluated.

nbasis: (required) An integer variable specifying the number of basis
functions.

power: (required) A vector of nbasis powers λj for the basis functions
tλj . These powers need not be integers, and may be negative, since
it is assumed that t will only be positive.

Returns: A list in S-PLUS or a struct in MATLAB with the basis

class attribute with members as above having names type, rangeval,
nbasis, and params, respectively.

3.1.5 create.monomial.basis or create monomial basis

create_monomial_basis(rangeval, nbasis, power)

create.monomial.basis(rangeval, nbasis, power=0:(nbasis-1))

Purpose: Create an monomial basis object.

Arguments: rangeval: (required) A vector of length 2 containing the ini-
tial and final values of argument t defining the interval over which
the functional data object can be evaluated.

nbasis: (required) An integer variable specifying the number of basis
functions.

power: (optional) A vector of nbasis nonnegative integer powers j
for the basis functions tj. The default is the power sequence 0,

1, ..., nbasis-1.

Returns: A list in S-PLUS or a struct in MATLAB with the basis

class attribute with members as above having names type, rangeval,
nbasis, and params, respectively.

3.1.6 create.constant.basis or create constant basis

create_constant_basis(rangeval)

create.constant.basis(rangeval)

25

Purpose: Create a constant basis object, containing only one basis func-
tion, whose value is always one.

Arguments: rangeval: (required) A vector of length 2 containing the ini-
tial and final values of argument t defining the interval over which
the functional data object can be evaluated.

Returns: A list in S-PLUS or a struct in MATLAB with the basis

class attribute with members as above having names type, rangeval,
nbasis, and params, respectively.

3.1.7 create.polygonal.basis or create polygonal basis

create_polygonal_basis(argvals)

create.polygonal.basis(argvals)

Purpose: Create a polygonal basis object. This is used where all the infor-
mation in the original discrete data must be preserved, but converted
to functional form. Such a function is a polygonal line, with vertices
at the sampling points tj, and heights at these vertices equal to the
corresponding observed values yj.

Arguments: argvals: (required) A vector of defining the points at which
the line segments are joined. These will usually be the sampling
points for the raw data.

Returns: A list in S-PLUS or a struct in MATLAB with the basis

class attribute with members as above having names type, rangeval,
nbasis, and params, respectively.

3.1.8 basisfd (R/S-PLUS) or basis (Matlab)

basis(type, rangeval, nbasis, params)

basisfd(type, rangeval, nbasis, params)

You might want to review the “Important technical note for programmers”
before reading on here.

26

Purpose: The generic function for creating a basis object. You are not
likely to need these functions, unless you get into programming your
own basis functions.

Arguments: type: (required) A character variable with one of the values
fourier, bspline, const, expon, polyg, poly, or power indicat-
ing the nature of the basis. Some variants of these spellings are
allowed.

rangeval: (required) A vector of length 2 containing the initial and
final values of argument t defining the interval over which the
functional data object can be evaluated.

nbasis: (required) An integer variable specifying the number of basis
functions

params: (required) A vector containing the parameters defining the
basis functions. See Section 2.2.1 for details.

Returns: A list in S-PLUS or a struct in MATLAB with the basis

class attribute with members as above having names type, rangeval,
nbasis, and params, respectively.

3.1.9 Additional optional arguments for the basis creation func-
tions

These additional arguments come after the arguments specified above, and
extend the ways in which basis objects can be created and used.

The arguments are in same order as they are described here. The first
argument dropind is used to delete unwanted basis functions from a basis
system. The next two permit the use of numerical quadrature approximation
of integrals in situations where these integrals must be evaluated many times.

dropind: An integer array that conains a subset of the indices 1, . . . , nbasis
that indicates basis functions that are to be dropped or not included
in the final basis system. This provision is especially helpful for the
B-spline basis where a function is desired which takes the value zero at
one or both boundaries. The respective boundary splines with indices
1 and nbasis are the only basis functions that are nonzero at the
boundaries, and dropping them ensures that the resulting spline will

27

go to zero where required. If more than one boundary spline is dropped,
the number of derivatives which are also zero can also be controlled.
Likewise, if a Fourier basis is desired that is centered on zero, then one
can drop the initial constant basis function.

quadvals: A matrix with two columns. The first column contains argu-
ment values that are used for computing a numerical quadrature ap-
proximation to an integral. The second column contains quadrature
weights. For example, Simpson’s rule is defined by an odd number (≥ 5
as well) of equally spaced quadrature points and quadrature weights
(1h, 4h, 2h, 4h, ...4h, 2h, 4h, 1h) where h is the spacing between adja-
cent quadrature points.

values: A cell array where the first cell contains the matrix of basis functions
evaluated at the quadrature weights in quadvals, the second the values
of the first derivative of the basis functions, and so on. That is, if m is
the highest order of derivative required, the cell array has m + 1 cells.

We now turn to two functions that create fd objects, one for regular objects,
and the other for functions of two arguments, or bivariate fd objects. Here I
simply use the class name to create an object of that class.

3.1.10 fd

fd(coef, basisobj, fdnames)

fd(coef, basisobj, fdnames=defaultnames)

Purpose: to create an fd object containing functional observations. Note
that one would normally do this by a call to the smooth basis and
data2fd function described below, so that this function may not be
needed very often.

Arguments: coef: (required) A 2- or 3-dimensional array, the first dimen-
sion corresponding to basis functions, the second to replications,
and the third, if present, to functions.

basisobj: (required) An object of the basis class.

28

fdnames: (optional) A list in S-PLUS or a struct in MATLAB of
length 3, each member being a string vector containing labels for
the levels of the corresponding dimension of the discrete data.
The first dimension is for argument values, and is given the de-
fault name ‘time’, the second is for replications, and is given the
default name ‘reps’, and the third is for functions, and is given
the default name ‘values’. These default names are assigned in
function tt data2fd, which also assigns default string vectors by
using the dimnames attribute of the discrete data array.

Returns: A list in S-PLUS or a struct in MATLAB with the fd class
attribute containing the coefficient array with the name coefs, a basis
object with the name basis, and a list with the name fdnames.

3.1.11 bifd

bifd(coef, sbasisobj, tbasisobj, bifdnames)

bifd(coef, sbasisobj, tbasisobj,

bifdnames = list(NULL, repnames, NULL))

Purpose: to create a bifd object containing bivariate functional observa-
tions. This function is not normally needed; it is called within other
functions to create bivariate functions such as covariance functions and
bivariate regression functions.

Arguments: coef: (required) A 2-, 3-, or 4-dimensional array, the first two
dimensions corresponding to basis functions, the third to replica-
tions, and the fourth, if present, to functions.

sbasisobj: (required) An object of the basis class for the first argu-
ment.

tbasisobj: (required) An object of the basis class for the second ar-
gument.

fdnames: (optional) A list in S-PLUS or a struct in MATLAB of
length 3 containing dimension names. See fd above for details.

Returns: A list in S-PLUS or a struct in MATLAB with the bifd class
attribute containing the coefficient array with the name coefs, a basis

29

object with the name sbasis, a basis object with the name tbasis,
and a list with the name fdnames.

3.2 The data2fd function

We now describe a simple technique for creating a functional data object from
discrete data. This step represents the discrete data associated with each
replication by one or more functions, defined by a basis for the expansion
of the functions, along with the coefficients determining the expansion. The
result is a set of functions that can be evaluated for any argument value,
and which can be manipulated in various ways, such as computing inner
products, taking derivatives and so on.

Function data2fd, on the other hand, is not primarily intended to smooth
the data. This may be left to two more flexible functions,

• smooth.basis in S-PLUS or smooth basis in MATLAB that uses a
roughness penalty to smooth data. This is the most versatile smoothing
function, and intended for more high-end applications where the nature
and amount of smooth must be carefully controlled.

• smooth.fd in S-PLUS or smooth fd in MATLAB, that has as an ar-
gument an FD object that has already been computed.

However, I will wait until I have defined the new Lfd and fdPar classes before
describing these two functions.

Indeed, our philosophy has been to leave considerable roughness in the
data, but to apply smoothing methods to quantities that are estimated from
the functions, such as eigenfunctions or harmonics in principal components
analysis, regression functions in linear modeling, and canonical weight func-
tions in canonical correlation analysis.

First we need to consider how the data corresponding to the discrete
sampling times tj should be set up for input to function data2fd.

3.2.1 Format of the Data

The first step in an analysis is to collect, clean and organize the raw data. We
assume that the observed data are functions of a one-dimensional argument
t, which for ease of reference we shall call “time”. Each function is observed

30

at discrete values ti, which may or may not be equally spaced. There may
well be more than one function of t being observed, for example the separate
coordinates of the handwriting data. In any case, there will be replications
of the observed function(s).

We shall assume, therefore, that our data are given in the form of a one-
two- or three-dimensional array Y of data values, and a vector or matrix
argvals of values of t. If argvals is a vector, then it is assumed that all
the replications are observed at the same time points. Thus, if only one
function is being observed, then, using S-PLUS syntax, Y[i,j] contains the
value of replication j at time point argvals[i]. If multiple functions are
observed, then Y[i,j,k] contains the value for replication j of function k
at time argvals[i]. Thus, the first dimension of Y corresponds to discrete
times of observation, the second, if required, to replications, and the third,
if required, to functions or variables. For example, if we set up the gait data
in this way, where there are 20 sampling times, Y will be 20 by 39 by 2.

If not all replications are observed at every time point, then missing values
can be coded as NA (S-PLUS) or NaN (MATLAB). If the replications are
observed at varying time points, then argvals should be supplied as a matrix,
with argvals[i,j] being the time point at which Y[i,j] or Y[i,j,k] is
observed. If the number of argument values varies from one replication to
another, the rows of argvals should be padded out with NAs in S-PLUS
or NaN’s in MATLAB. If any argvals[i,j] is coded as missing, then the
corresponding entry or members in Y is not used.

Names can be supplied for each for each dimension of the data. By
default, these are the strings time, replications and variables.

3.2.2 data2fd

data2fd(y, argvals, basis, fdnames)

data2fd(y, argvals, basis, fdnames = defaultnames)

Purpose: This function converts an array ’y’ of function values plus an
array ’argvals’ of argument values to a functional data object. This a
function that tries to do as much for the user as possible. This includes
selecting a basis, if one is not provided.

Arguments: y: (required) An array containing sampled values of curves. If
y is a vector, only one replicate and variable are assumed. If y is

31

a matrix, rows must correspond to argument values and columns
to replications or cases, and it will be assumed that there is only
one variable per observation. If y is a three-dimensional array, the
first dimension (rows) corresponds to argument values, the second
(columns) to replications, and the third (layers) to variables within
replications. Missing values are permitted, and the number of
values may vary from one replication to another. If this is the case,
the number of rows must equal the maximum number of argument
values, and columns having fewer values must be padded out with
missing value codes.

argvals: (required) A set of argument values. If this is a vector, the
same set of argument values is used for all columns of y. If ’argvals’
is a matrix, the columns correspond to the columns of y, and
contain the argument values for that replicate or case.

basisobj: (required) Either: A basis object created by function basis

in Matlab or basisfd in R/S-PLUS, or a missing value, in which
case a basis object is set up by the function using the values of
the next three arguments.

fdnames: (optional) A list in S-PLUS or a cell array in MATLAB
of length 3, each member being a string vector containing labels
for the levels of the corresponding dimension of the discrete data.
The first member is a name is for argument values, and is given
the default value ’time’, the second is for replications, and is
given the default name ’reps’, and the third is for functions,
and is given the default name ’values’. These default names are
assigned in function data2fd, but the S-PLUS version can also
assign default string vectors by using the dimnames attribute of
the discrete data array.

Returns: A list in S-PLUS or a struct in MATLAB with the fd class
attribute containing the coefficient array with the name coef, a basis

object with the name basis, and a list with the name fdnames. If
periodic is T, the basis is of type fourier, otherwise it is either of type
bspline or polygonal. It is of polygonal type if nresol=length(argvals)
and nderiv=0; otherwise it is of type bspline.

32

3.3 Two more classes for smoothing

Many applications require more control over the smoothing process than the
function data2fd, which simply uses ordinary least squares approximation
to estimate coefficients.

Our preferred approach for more sophisticated smoothing is the roughness
penalty or regularization method. This method requires the definition of
a penalty on the roughness of a smooth and a smoothing parameter that
controls the degree of smoothing.

First, we have to define a class that is used to define a flexible family of
roughness penalties.

3.3.1 The Lfd class

The most common type of penalty is defined in terms a integrated squared
derivative. The classic cubic smoothing spline is defined by the penalty

∫
[D2x(t)]2 dt.

This defines roughness as the total squared curvature of the fitting function
x. More generally, we may use

∫
[Dmx(t)]2 dt, m ≥ 2,

if we want to define roughness as the total squared curvature of the derivative
of order m− 2.

However, even more sophistication in the definition of roughness can be
obtained by defining a linear differential operator of the form

Lx = β0x + β1Dx + . . . + βm−1D
m−1x + Dmx

where the m weight functions βj, j = 0, . . . , m − 1, may be either constants
or themselves functions. The textbook and the examples that are distributed
with this code make heavy use of the operator

Lx = ω2Dx + D3x

for situations where the data are periodic with period 2π/ω and we want to
smooth towards a vertically shifted sinusoid.

The Lfd class is created with the following functions

33

Lfd(m, bwtlist)

Lfd(m, bwtcell)

Purpose: This function defines a linear differential operator object.

Arguments: m: (required) A nonnegative integer specifying the degree of
the operator. This is the highest order of derivative used in the
operator.

bwtlist or bwtcell: (optional) A list in S-PLUS or a cell array in
MATLAB of length m containing either

• functional data objects or

• functional parameter objects (described next).

These objects define the weight function βj that are used to define
the operator. If this argument is not present, the operator is
simply Dm.

Returns: A list in S-PLUS or a struct in MATLAB with the Lfd class
attribute containing the specification of the linear differential operator.

3.3.2 The fdPar class

In functional data analysis, functions are often the result of smoothing data
where a roughness penalty is employed, or are a result of estimating a func-
tional parameter where a roughness penalty is used to control its smoothness.
In fact, a function for smoothing data is just a special case of a functional
parameter.

When we estimate functional parameters, we need to specify at least some
of the following four characteristics:

• The functional data object itself, consisting of its basis and a coefficient
vector. The latter is important where the estimation is iterative and
an initial value of the functional parameter is required to start off the
iterations.

• The linear differential operator defining the roughness penalty.

• The smoothing parameter λ.

34

• A binary variable indicating whether the functional parameter is to
be estimated (1), or is to be held fixed (0). For example, we may
want to estimate some of the regression functions in a functional linear
regression, and hold others fixed.

We can see that the functional parameter class inherits from the func-
tional data class by adding to it extra slots or attributes.

The fdPar class is created with the following functions

fdPar(fdobj, Lfdobj=0, lambda=0, estimate=1)

fdPar(fdobj, Lfdobj, lambda, estimate)

Purpose: This function defines a functional parameter object.

Arguments: fdobj: (required) A functional data object.

Lfdobj: (optional) An object of the Lfd class defining a linear differ-
ential object. Alternative, a nonnegative integer may be supplied.
An integer is not a Lfd object, but it is converted to the Dm op-
erator inside the function. If this argument is not supplied, zero
is assumed.

lambda: (optional) A nonnegative real number that defines the smooth-
ing parameter λ that multiplies the roughness penalty and controls
the degree of smoothness. If not supplied, zero is assumed.

estimate: (optional) If T in S-PLUS or a positive number in MAT-
LAB, the function is to be estimated. If F in S-PLUS or zero in
MATLAB, the function is to be held fixed. The default is T or 1,
respectively.

Returns: A list in S-PLUS or a struct in MATLAB with the fdPar

class attribute containing the specification of the functional parameter
object.

3.4 Smoothing data using a roughness penalty

The roughness penalty method or regularization is used for the smoothing
process by the two functions in this section. At this point, it would be
worthwhile going through Chapters 4 and 5 in the text to appreciate the
concepts involved.

35

The function data2fd computes the least squares approximation to the
data yij, j = 1, . . . , n corresponding to a specific function xi by minimizing

SMSSE(yi, c) =
n∑

j=1

[yij −
K∑

k=1

cikφk(tj)]
2. (2)

In this expression the coefficients cik determine the expansion, and the fitting
criterion SMSSE is minimized with respect to these. The expression also has
the possibility of weighting data values differently through a choice of weights
wj. We can control the smoothness of the fit by our choice of K; the smaller
K, the smoother the fit, and the larger K, the closer the fit will be to the
data. The functional observation is then

xi(t) =
K∑

k=1

cikφk(t).

However, there are several important advantages to further smoothing or
regularizing the function xi by attaching to the least squares fitting criterion
an additional term that controls the roughness of some derivative of the fit,
a process called regularization.

We regularize the fit to the data vector y by minimizing the criterion

PENSSE = SMSSE(y, c) + λPEN(x) (3)

where the second term on the right side penalizes some form of roughness in
x. For example, we can use the criterion

PEN(x) =
∫

[D2x(t)]2 dt, (4)

which measures the roughness of the function x by integrating the square of
its second derivative D2x, called the total curvature of x. The more wiggly
x is, the larger this term will be.

The smoothing parameter λ plays a key role. The larger λ, the more
heavily roughness in x is penalized, and ultimately as λ increases without
limit, x is forced towards a straight line, for which the second derivative is
everywhere 0. On the other hand, as λ is reduced to zero, the roughness of
x matters less and less, and finally when λ → 0, x will be just as rough as y
since it will pass exactly through the data points.

36

Why consider regularization? First, it gives us much finer control over the
smoothness of fit. We can even use more basis functions than data values,
and still achieve a smooth fit! Without regularization, on the other hand, a
smooth fit often means sacrificing important variation in x in places where
it is needed.

Also, we may want to get a good derivative estimate, a critical considera-
tion for a number of the displays and analyses described in the book. For this
purpose, we may choose to penalize a higher order derivative. For example, if
we wanted to get a good acceleration estimate (D2x), we might penalize the
size of D4x, thereby controlling the curvature in the acceleration function.
Getting a good derivative estimate can be difficult without regularization.

It is shown in Chapter 5 that an equivalent expression for the penalty
term, PEN, is

PEN = λc′Rc.

The order K matrix R is called the penalty matrix, and, as before, vector c
contains the coefficients of the basis expansion.

The FDA functions permit wider range of roughness penalties than the
two mentioned above, namely integrating the square of D2x or of D4x. We
can also penalize the square of the result of applying any linear differential
operator L to x. A linear differential operator is a weighted combination of
derivatives, and has the following structure:

Lx(t) = β0(t)x(t) + β1(t)Dx(t) + . . . + βm−1(t)D
m−1x(t) + Dmx(t) . (5)

Integer m is the order of the linear differential operator L, and each of the m
functions βj(t), j = 0, . . . , m−1 apply a weight that may vary over argument
t to the derivative of order j. We see that Lx = D2x is a special case in which
the order is 2 and the two weight functions are β0 = β1 = 0.

The regularization penalty (4) then becomes

PEN(x) =
∫

[Lx(t)]2 dt. (6)

The reason for considering this wider family of penalties that by the
appropriate choice of L, we can force the smooth as λ → ∞ to be toward
a linear combination of m functions uj that we choose. The choice L = D2

smooths toward a linear combination of u1 = 1 and u2 = t, for example.
One might call this wider choice of penalties a designer smooth in the sense

37

that we customize what we choose to call smooth. Examples are given in the
book, and more technical detail is available in Heckman and Ramsay (2000).

Now when we look at the structure of (5), we see that it can be de-
fined by a functional data object having m replications, with observations
β0, β1, . . . , βm−1. To define the operator, all we have to do is to choose a
suitable basis for expanding these functions to the desired level of accuracy,
set up a matrix Y of values of these functions at a fine mesh of sampling
points tj, and input this matrix, this set of sampling points, and the basis
into function data2fd.

Thus, in all functions using a roughness penalty, the argument fdParobj
appears. One of the members of the fdPar class is an object of the class Lfd,
and this is allowed to be of two types: an integer such as 2, in which case
the penalty is defined to be of the form (4), or a Lfd object, in which case
the penalty is of the form (6). The order m of the differential operator is
then determined by the number of functions in the Lfd object in argument
fdParobj. As I indicated earlier, the fdParobj also contains the smoothing
parameter λ as one of its members.

We now give the specifications for the smoothing functions.

3.4.1 smooth.basis or smooth basis

The following function permits the direct smoothing of the raw discrete data,
if this seems desirable. It also offers the possibility of variable weighting of the
discrete observations. However, it lacks the capability of dealing with missing
data or with argument values that vary from observation to observation that
is available in data2fd.

smooth_basis(argvals, y, fdParobj, wtvec, fdnames)

smooth.basis(argvals, y, fdParobj, wtvec=rep(1,n),

fdnames=list(NULL, dimnames(y)[2], NULL))

Purpose: Smooths the discrete data in argument y, sampled at argument
values in argvals, and returns a functional data object containing the
smooth functions.

Arguments: argvals: (required) A set of argument values, assumed to be
common to all replicates.

38

y: (required) An array containing values of curves. If the array is a
matrix, rows must correspond to argument values and columns to
replications, and it will be assumed that there is only one variable
per observation. If y is a three-dimensional array, the first dimen-
sion corresponds to argument values, the second to replications,
and the third to variables within replications. If y is a vector, only
one replicate and variable are assumed.

fdParobj: (required) Either

• object of the fdPar class containing as a member an fd object
which in turn contains the basis to be used for expanding the
functions, or

• a basis object that directly specifies the basis to be used. In
this case, λ will be taken to be zero, and the coefficients will
be estimated by least squares estimation.

wtvec: (optional) A vector of positive weights for the discrete values.

fdnames: (optional) A list in S-PLUS or a struct in MATLAB
of length 3 with members containing 1. a single name for the
argument domain, such as “Time” 2. a vector of names for the
replications or cases 3. a name for the function, or a vector of
names if there are multiple functions.

Returns: A list in S-PLUS or a struct in MATLAB object in S-PLUS
containing the following information:

fd: An FD object

df: A degrees of freedom measure

gcf: A generalized cross-validation measure of lack of fit that discounts
fit for the degrees of freedom used to achieve it. It is often sug-
gested that a good value of the smoothing parameter is one that
minimizes this measure. A GCV value is returned for each curve
that is smoothed, and for each function as well if the curves are
multivariate.

coef: The estimated coefficient vector, matrix, or array depending on
the number of curves and whether or not the functions are multi-
variate.

39

SSE: The error sum of squares summed across sampling points and, if
more than one curve is involved, across curves, and, if more than
one function is involved, also across functions.

PENMAT: The penalty matrix R.

Y2CMAP: The matrix Sλ mapping the data to the coefficients for
each curve.

3.4.2 smooth.fd for smooth fd

This is a function designed to smooth a set of functional data objects. That
is, the discrete data have typically already been processed by data2fd or
smooth basis to produce a fd object, and now one wants to impose addi-
tional smoothness on the objects. The smoothed versions of these objects
may retain the same basis as the originals, or they may use a new basis.

smooth_fd(fd, fdParobj, rebase)

smooth.fd(fd, fdParobj, rebase = T)

Purpose: Smooth the functions in a functional data object by the roughness
penalty or regularization method, and return a functional data object
containing the smooth functions. The functional data objects to be
smoothed will usually have already been created by data2fd.

Arguments: fd: (required) A functional data object to be smoothed.

fdParobj: (required) Either

• object of the fdPar class containing as a member an fd object
which in turn contains the basis to be used for expanding the
functions, or

• a basis object that directly specifies the basis to be used. In
this case, λ will be taken to be zero, and the coefficients will
be estimated by least squares estimation.

rebase: (optional) If T or nonzero, and the basis type is polygonal,
then the basis is changed to a cubic bspline basis before smoothing.

Returns: A functional data object.

40

3.5 Functions for Constrained Smoothing

It can happen that we require a smoothing function to satisfy certain con-
straints. Among these are: (1) that the function be strictly positive, (2) that
the function be strictly increasing or monotonic, and (3) that the function
be a probability density function (i. e. strictly positive and unit area under
the function.) Just using the standard smoothing functions above will often
not work because there is no provision in them for forcing the functions to
be constrained in any way.

In each of these cases, we have a special purpose smoothing function that
smooths the discrete data with a function that satisfies these constraints.
Each each case, also, the constrained function is defined by a transformation
of an unconstrained function that is a standard fd object. That is, that is
represented by a basis function expansion. Moreover, each of these objects
can also be smoothed by applying a roughness penalty.

Because the actual fit to the data is no longer a linear combination of
known basis functions, but rather a transformation of a fd object, the com-
putation requires iterative methods for optimizing a measure of fit. This
inevitably implies considerably more computation time. It also implies that
an initial estimate of the fd object must be supplied as an argument. This
can usually be an object that has all coefficients equal to zero.

Note: Each of these functions smooths only a single set of discrete data,
and returns a fd object that is a single observation. When multiple observa-
tions are involved, these functions must be called repeatedly. These functions
are not designed for multivariate functional observations.

3.5.1 Positive Smoothing with smooth.pos and smooth pos

In this case the fit to the data is of the form x(t) = exp[W (t)] where W (t) is
represented by a fd object. The following functions do the job.

smooth_pos(argvals, y, fdParobj, wt, conv, iterlim, dbglev)

smooth.pos(argvals, y, fdParobj, wtvec=rep(1,n),

conv=1e-4, iterlim=20, dbglev=1)

Purpose: Smooths the discrete data in argument y sampled at argument
values in argvals, and returns a functional data object Wfd.

41

Arguments: argvals: (required)A set of argument values.

y: (required) An array containing values to be smoothed for a single
functional observation.

fdParobj: (required) A functional parameter or fdPar object that
contains an initial estimate Wfd0 of the function W (t) that is ex-
ponentiated to produce the positive smoothing function. This will
often be the zero function. fdParobj may also contain a linear
differential operator object and a smoothing parameter value to
control the roughness of W (t).

wt: (optional) A vector of positive weights for the discrete values. By
default these values are all one’s.

conv: (optional) A small positive constant that controls the level of
convergence of the fitting criterion that is required in the numer-
ical optimization. The default is 0.0001.

iterlim: (optional) The maximum number of iterations allowed. The
default is 20.

dbglev: (optional) An integer controlling the amount of information
displayed for each iteration. By default only the iteration number,
fitting criterion value, and the gradient length are displayed.

Returns: A list in S-PLUS or a struct in MATLAB object in S-PLUS
containing the following information. For MATLAB, each of the objects
is returned separately and in the following order.

Wfdobj: The functional data object defining converged estimate of
the function W (t). Remember that the fit to the data is defined
by exp(W (t), so that object Wfdobj is in fact the natural logarithm
of the fit.

Flist: List object in S-PLUS or a struct object in MATLAB containing

1. Flist$f, the final log likelihood ,

2. Flist$norm, the final norm of gradient.

iternum: the number of iterations.

iterhist: , a matrix containing results for each iteration.

42

3.5.2 Monotone Smoothing with smooth.monotone and smooth monotone

In this case the fit to the data is of the form

x(t) = z′β0 + β1

∫ t

0
exp[W (u)] du (7)

where W (t) is represented by a fd object. That is, a monotone smooth
can be represented as the indefinite integral of a positive function, defined
by exp[W (t)], multiplied by a nonzero constant β1, plus a constant. The
constant term, defined by β0, is permitted to be a linear combination of a
set of covariate values in vector z, in which case β0 is a vector of the same
length containing the regression coefficients.

The following functions do the job. They are set up in very much the
same way as the functions for positive smoothing given above.

smooth_monotone(argvals, y, fdParobj, zmat, wt,

conv, iterlim, dbglev)

smooth.monotone(argvals, y, fdParobj,

zmat=matrix(1,n,1), wt=rep(1,n),

conv=1e-4, iterlim=20, dbglev=1)

Purpose: Smooths the discrete data in argument y sampled at argument
values in argvals, and returns a functional data object defining a
strictly positive function that fits the data.

Arguments: argvals: (required)A set of argument values.

y: (required) An array containing values to be smoothed for a single
functional observation.

wt: (optional) A vector of positive weights for the discrete values. By
default these values are all one’s.

fdParobj: (required) A functional parameter or fdPar object that
contains an initial estimate Wfd0 of the function W (t) that is ex-
ponentiated to produce the positive smoothing function. This will
often be the zero function. fdParobj may also contain a linear
differential operator object and a smoothing parameter value to
control the roughness of W (t).

43

zmat: (optional) A matrix of covariate values with a row for each
discrete value to be smoothed and a column for each covariate.
By default this is a column of one’s.

wt: (optional) A vector of positive weights for the discrete values. By
default these values are all one’s.

conv: (optional) A small positive constant that controls the level of
convergence of the fitting criterion that is required in the numer-
ical optimization. The default is 0.0001.

iterlim: (optional) The maximum number of iterations allowed. The
default is 20.

dbglev: (optional) An integer controlling the amount of information
displayed for each iteration. By default only the iteration number,
fitting criterion value, and the gradient length are displayed.

Returns: A list in S-PLUS or a struct in MATLAB object in S-PLUS
containing the following information. For MATLAB, each of the objects
is returned separately and in the following order.

Wfdobj: The functional data object defining converged estimate of
the function W (t). Remember that the fit to the data is defined
by exp(W (t), so that object Wfdobj is in fact the natural logarithm
of the fit.

Flist: List object in S-PLUS or a struct object in MATLAB containing

1. Flist$f, the final log likelihood ,

2. Flist$norm, the final norm of gradient.

iternum: the number of iterations.

iterhist: , a matrix containing results for each iteration.

3.6 Summary, Evaluation and Plotting Functions

We now detail the functions used to display and summarize functional data
objects.

These inherit the possible arguments of their more generic counterparts.
For example, we have a function called plot.fd, to be described below,
but in fact, you only need to type plot(fd) to invoke this special-purpose

44

function for plotting functional data objects in the fd class. This means
that you don’t have to remember the extension following the “.”, and you
can expect these functions to do pretty much the same thing as their more
familiar counterparts. Moreover, optional arguments such as “type, lty, xlab,
ylab, main,” and etc. in S-PLUS can also be included in the call.

Also provided is function eval.fd for evaluating a functional data object
at specified argument values. This can be useful for customizing plots and
other applications where these plotting functions don’t do the job required.

3.6.1 plot.fd, plot

These functions are designed to plot functional data objects or their deriva-
tives, either replication by replication, or all replications simultaneously.

plot(fd, Lfd, matplt, href, nx)

plot.fd(fd, Lfd=0, matplt=T, href=T, nx=101, ...)

Purpose: To plot a functional data object, or one of its derivatives.

Arguments: fd: (required) A functional data object; that is, a list with
the fd class attribute.

Lfd: (optional) Either an integer of value 0 or higher, or an fd object.
If an integer, it specifies the order of derivative to be evaluated,
0 meaning the functions themselves. If it is a functional data
object, the functions are taken to be weight functions defining a
linear differential operator, and the order of the operator is equal
to the number of functions.

matplt: (optional) A logical variable. If the value is T in S-PLUS or
nonzero in MATLAB, all the functions are plotted simultaneously
using the function matplot. If the value is F or zero, respectively,
the plot is interactive: each function is plotted in turn, and a
mouse-click is required to advance to the next plot.

href: A logical variable. If the value is T in S-PLUS or nonzero in
MATLAB, a horizontal dotted line is plotted through 0 on the
ordinate.

45

nx: The number of points at which the functions are to be evaluated
for plotting. For fairly smooth functions, 101 values are usually
enough, but for functions with a lot of fine detail, this may need
to be increased.

...: (S-PLUS only) The additional arguments for controlling the plot
available in the regular function plot.

Returns: none

3.6.2 cycleplot.fd or cycleplot

cycleplot(fd, matplt, nx)

cycleplot.fd(fd, matplt=T, nx=101, ...)

Purpose: Plot a periodic bivariate functional data object, or one of its
derivatives, as a set of cycles. item[Arguments:]

fd: (required) A functional data object containing bivariate functions,
that is, taking on two types of values. The basis must be of type
fourier.

matplt: (optional) A logical variable. If the value is T, all the functions
are plotted simultaneously using the function matplot. If the
value is F, the plot is interactive: each function is plotted in turn,
and a mouse-click is required to advance to the next plot.

nx: (optional) The number of points at which the functions are to be
evaluated for plotting. For fairly smooth functions, 101 values are
usually enough, but for functions with a lot of fine detail, this may
need to be increased.

...: S-PLUS only) The additional arguments for controlling the plot
that are available in the regular function plot.

Returns: none

3.6.3 lines.fd or line

line(fd, Lfd, nx)

lines.fd(fd, Lfd=0, nx=101, ...)

46

Purpose: Similar to plot.fd or plot, but this adds function plots to an
existing plot.

Arguments: fd: (required) A functional data object; that is, a list with
the fd class attribute.

Lfd: (optional) Either an integer of value 0 or higher, or an Lfd object.
If an integer, it specifies the order of derivative to be evaluated, 0
meaning the functions themselves. If it is an Lfd object, it defines
a linear differential operator.

nx: (optional) The number of points at which the functions are to be
evaluated for plotting.

...: (S-PLUS only) The additional arguments for controlling the plot
available in the regular function lines.

Returns: none

3.6.4 print.fd or display

display(fd)

print.fd(fd, ...)

Purpose: Print a functional data object. The usual method for printing an
array is used for the “coefs” argument, and the characteristics of the
basis also printed.

Arguments: fd: (required) A functional data object; that is, a list with
the fd class attribute.

...: (S-PLUS only) The additional arguments for controlling the plot
available in the regular function print.

Returns: none

3.6.5 summary.fd (S-PLUS only)

summary.fd(fd,...)

Purpose: Summarize a functional data object. The dimensions of the “data”
array are printed, along with the characteristics of the basis object.

47

Arguments: fd: (required) A functional data object; that is, a list with
the fd class attribute.

Returns: none

3.6.6 eval.fd or eval fd

These functions evaluate a functional data object for each of a strictly in-
creasing set of values.

eval_fd(evalargs, fd, Lfd)

eval.fd(evalargs, fd, Lfd=0)

Purpose: To evaluate a functional data object at specified argument values.

Arguments: Note that the first two arguments may be interchanged.

evalargs: (required) A vector of argument values at which the func-
tions in the functional data object are to be evaluated.

fd: (required) A functional data object; that is, a list with the fd

class attribute.

Lfd: (optional) Either an integer of value 0 or higher, or an fd object.
If an integer, it specifies the order of derivative to be evaluated,
0 meaning the functions themselves. If it is a functional data
object, the functions are taken to be weight functions defining a
linear differential operator, and the order of the operator is equal
to the number of functions.

Returns: An array of 2 or 3 dimensions containing the function values. The
first dimension corresponds to the argument values in “evalargs”, the
second to replications, and the third if present to functions.

There are also functions eval.monfd and eval monfd that are set up in
the same way that will evaluate a strictly monotonic function defined by a
functional data object. These functions do not apply the multiplier β1 or the
constant term defined by β0 in (7), however.

48

3.6.7 eval.bifd or eval bifd

eval_bifd(sevalarg, tevalarg, bifd, sLfd, tLfd)

eval.bifd(sevalarg, tevalarg, bifd, sLfd = 0, tLfd = 0)

Purpose: To evaluate a bivariate functional data object at specified argu-
ment values s and t.

Arguments: Note that the first three arguments may also occur in the order
bifd, sevalarg, tevalarg.

sevalarg: (required) A vector of argument values for the first argument
s of the functions in the functional data object that are to be
evaluated.

tevalarg: (required) A vector of argument values for the second argu-
ment t of the functions in the functional data object that are to
be evaluated.

bifd: (required) A bivariate functional data object; that is, a list

(S-PLUS) or struct (MATLAB) with the bifd class attribute.

sLfd: (optional) An integer of value 0 or higher, or a linear differential
operator or Lfd object. This specifies the order of derivative with
respect to the first argument s that is to be evaluated, 0 meaning
the functions themselves.

tLfd: (optional) The same as argument sLfd, but that specifies the
linear differential operator for the second argument.

Returns: An array of 2, 3, or 4 dimensions containing the function values.
The first dimension corresponds to the argument values in “sevalarg”,
the second to argument values in “tevalarg”, the third if present to
replications, and the fourth if present to functions.

3.7 Data Manipulation Functions

In addition to the display and summary functions mentioned above, it is
also possible to perform various manipulations of functional data objects.
These include subsetting, the elementary arithmetic operations, and taking
derivatives.

49

3.7.1 Subsets of Functional Data Observations

If you want to plot, print, or summarize only a portion of the data, you will
want to select a subset of the replications or variables, just as you can do for
rows and columns of matrices. Note that there are either 1 or 2 indices in the
function call depending on the number of dimensions of the “coefs” array.
For example, if there are multiple replications and multiple functions, fd[2,]
in S-PLUS or fd(2,:) in MATLAB selects the second replication and all
functions, and fd[,1:2] or fd(:,1:2) selects all replications and the first
two functions in S-PLUS and MATLAB, respectively. If there is only one
function, then fd[1:10] or fd(1:10) would select the first ten replications.

3.7.2 Arithmetical Operations

Functional data objects can be added, subtracted, multiplied, and divided.
Moreover, for each of these operations, either argument may be a scalar
rather than a functional data object. Thus, arithmetic for functional data
objects behaves much like that for matrices.

Indeed, adding and subtracting involve just adding and subtracting the
coefficient matrices. This means that the fd objects must have the same
basis.

In the case of multiplication and division, this is performed by evaluating
the two objects on a fine grid, performing the operation on the values, and
creating a new functional data object from these values. The basis used for
the first argument is used for the result. The operations

sqrt.fd(fd), deriv.fd(fd), fd^power

are also constructed in this way. It is up to the user to ensure that these
operations can actually be carried out. For example, you must be sure that
the denominator fd object is nowhere zero.

3.8 Registration Functions

In important initial step in a functional data analysis can be the lining up
of salient features of the functions, a process called registration. This is
described in Chapter 7.

50

3.8.1 Landmark Registration

The simplest registration process to understand and to implement is land-
mark registration, in which we specify the argument values associated with
each feature for each curve. In addition, we specify the same values for some
standard or reference curve. This is often the mean curve, but it may be
some specific curve judged to be especially typical that we want to serve as
our “gold standard”.

In landmark registration, we warp time for each curve so that, with re-
spect to this warped time, denoted by h(t), the timing of the features are
identical to those for the reference curve. That is, if t0f indicates the ref-
erence curve timing for landmark number f , and tif is the corresponding
timing for curve i, then we require that

hi(t0f) = tif

where hi is the warping function for this curve.
We assume here that these landmark timings are all in the interior of the

interval over which the curves are observed. The ends of the interval serve
automatically as landmarks, and do not have to be included.

The following function landmarkreg has as arguments an fd object for
the curves, an fd object for the reference curve, a matrix with a row for each
curve and a column for each landmark containing the landmark values tif for
the curves, and a vector containing the landmark timings for the reference
curve.

The function estimates the warping functions using the S-PLUS standard
function smooth.spline. A fifth optional parameter is available to control
the amount of smoothing used in the spline fitting. Note that it is vital that
the warping functions be strictly monotonic, and if any estimated warping
function fails this condition, a warning message is output. In this event,
the registration should be repeated with a larger value of the smoothing
parameter.

landmarkreg(fd, ximarks, x0marks, WfdParobj, monwrd)

landmarkreg(fd, ximarks, x0marks=xmeanmarks,

WfdParobj, monwrd=F)

Purpose: To register curves using landmarks.

51

Arguments: fd: A functional data object for the curves to be registered.

fd0: A functional data object for the reference curve.

ximarks: A matrix with a row for each curve and a column for each
landmark containing the landmark timings tif .

x0marks: A vector containing landmark timings t0f for the reference
curve. By default these are the average timings.

WfdParobj: (required) A functional parameter or fdPar object that
defines the strictly monotone warping function. The object can
also define a Lfd object and a smoothing parameter for controlling
the smoothness of the warping function.

monwrd: (optional) If T in S-PLUS or 1 in MATLAB, the warping
function is estimated using a monotone smoothing method; oth-
erwise, a regular smoothing method is used, which is not guar-
anteed to give strictly monotonic warping functions. However,
using monotone smoothing will substantially increase the amount
of computation required.

Returns: regfd: A functional data object for the registered curves.

warpfd: A functional data object defining the warping functions.

Wfd: A functional data object for function W (t) defining the warping
functions.

3.8.2 A Global Registration Function

This type of registration uses the whole curve, and does not require the esti-
mation of landmarks. The technique is described in Ramsay and Li (1998).

register_fd(y0fd, yfd, Wfd0Parobj, periodic, crit,

conv, iterlim, dbglev)

register.fd(y0fd, yfd, Wfd0Parobj, periodic=F, crit=2,

conv=1e-2, iterlim=10, dbglev=1)

Purpose: Registers the curves in argument yfd to the target function in ar-
gument yfd0, and returns a functional data object defining a set func-
tions that define the strictly monotonic warping functions that register

52

the curves to the target. The warping functions are strictly monotonic,
so these estimated functions define these warping functions in the same
way as for monotone smoothing functions, defined in (7).

Arguments: y0fd: (required) A functional data object defining the tar-
get. It must be univariate and it must define a single functional
observation.

yfd: (required) A functional data object defining the functions to be
registered to yfd0. Multiple functions are permitted.

WfdParobj: (required) A functional parameter or fdPar object that
defines the strictly monotone warping function. The object can
also define a Lfd object and a smoothing parameter for controlling
the smoothness of the warping function.

conv: (optional) A small positive constant that controls the level of
convergence of the fitting criterion that is required in the numer-
ical optimization. The default is 0.0001.

iterlim: (optional) The maximum number of iterations allowed. The
default is 20.

dbglev: (optional) An integer controlling the amount of information
displayed for each iteration. By default only the iteration number,
fitting criterion value, and the gradient length are displayed.

periodic: (optional) A logical variable in S-PLUS or a variable taking
only 0 or 1 in MATLAB. If T or 1, the functions are considered to
be periodic, in which case a constant can be added to all argument
values after they are warped. Otherwise the functions are assumed
to be non-periodic, and the arguments are not shifted. The default
is F or 0.

crit: (optional) An integer that is either 1 or 2 that indicates the nature
of the continuous registration criterion that is used. If 1, the
criterion is least squares, and if 2, the criterion is the minimum
eigenvalue of a cross-product matrix. In general, criterion 2 is to
be preferred. The default is 2.

Returns: A list in S-PLUS or a struct in MATLAB containing the fol-
lowing information. For MATLAB, each of the objects is returned
separately and in the following order.

53

regfd: A functional data object for the registered curves.

Wfd: A functional data object for function W (t) defining the warping
functions.

Flist: List object containing (1) Flist$f, the final log likelihood , (2)
Flist$norm, the final norm of gradient.

iternum: the number of iterations.

iterhist: , a matrix containing results for each iteration.

3.9 Elementary Statistical Functions

These are functions that compute functional versions of elementary statistical
descriptions such as means, standard deviations, variances, covariances, and
correlations. A function to subtract the mean function from the each curve
is also provided.

3.9.1 mean.fd or mean

mean(fd)

mean.fd(fd)

Purpose: To evaluate the point-wise mean of a set of functions in a func-
tional data object.

Arguments: fd: A functional data object.

Returns: A functional data object with a single replication that contains
the mean of the one or several functions in the fd object.

3.9.2 stddev.fd or stddev

stddev(fd)

stddev.fd(fd)

Purpose: To evaluate the point-wise standard deviation of a set of functions
in a functional data object.

Arguments: fd: A functional data object.

Returns: A functional data object with a single replication that contains
the standard deviation of the one or several functions in the fd object.

54

3.9.3 center.fd or center

center(fd)

center.fd(fd)

Purpose: To subtract the pointwise mean from each of the functions in a
functional data object; that is, to center them on the mean function.

Arguments: fd: A functional data object.

Returns: A functional data object with same dimensions as “fd” that con-
tains the centered versions of the functions in the object fd.

3.9.4 var.fd or var

var(fdx, fdy)

var.fd(fdx, fdy = fdx)

Purpose: To compute the variance and covariance functions for functional
data.

Arguments: fdx: (required) A functional data object.

fdy: (optional) An optional second functional data object.

Returns: A bivariate functional data object that contains the variance and,
if there are more than one function in “fd”, or if there is more than
argument in the call to var.fd, the covariance functions. Results differ
according to the number of arguments in the call.

• One argument: If “fdx” contains only replications of a single func-
tion, the coefficient matrix for the bifd object has two dimensions.
If “fdx” contains function replications for more than one function,
the bifd object has four dimensions. The third dimension has
length 1, and the fourth dimension has length equal to the num-
ber of possible pairs of functions. Pairs are enumerated (1,1),
(2,1), (2,2), (3,1) ... as is usual for the lower triangle of a sym-
metric matrix. For each pair the corresponding coefficients for the
covariance function (or variance function if the two functions in
the pair are the same), are given.

55

• Two arguments: If both arguments are functional data objects
containing replications of a single function, then the covariance
function is returned. If not, an error message is returned.

3.10 Principal Components Analysis

We now turn to principal components analysis, an exploratory analysis that
tends to be an early part of many projects. The pca.fd function S-PLUS or
pca function in MATLAB describes below computes the principal component
functions, eigenvalues, and principal component scores described in Chapter
6, and also incorporates the regularization concept described in Chapter 7.
The adjective phrase “principal component” being somewhat unwieldy, I opt
for the term “harmonic” in the following description

3.10.1 pca.fd or pca fd

pca_fd(fdobj, nharm, harmfdParobj, centerfns)

pca.fd(fdobj, nharm = 2, harmfdParobj, centerfns = T)

Purpose: To compute the harmonics, the eigenvalues, and harmonic scores
for functional data. If more than one function is found, these are com-
bined into a composite function.

Arguments: fdobj: (required) A functional data object.

nharm: (optional) The number of harmonics or principal components
desired. The default is two.

harmfdParobj: (optional) A functional parameter of fdPar object
defining the eigenfunctions harmonics that are to be estimated.
The object may also define a Lfd object and a smoothing parame-
ter for controlling the smoothness of the estimated eigenfunctions.
The default is to use the same basis that defines the functions in
argument fdobj and not to use smoothing.

centerfns: (optional) A logical variable. If T, the pointwise mean func-
tion is subtracted from each function before computing the har-
monics. The default is T.

Returns: In S-PLUS a list, with the following members, and in MATLAB
the members are returned directly.

56

harmfd: A functional data object containing the “nharm” harmonic,
principal component, or eigenfunctions. If there is more than one
variable in the “fd” argument, there is a harmonic corresponding
to each function, and in this case the coefficient matrix has three
dimensions.

values: The complete set of eigenvalues, equal in number to the num-
ber of basis functions, in the PCA.

scores: The principal component scores for each replication and har-
monic.

varprop: The proportion of variance accounted for by each harmonic.

meanfd: A fd object for the mean function.

3.10.2 plot.pca.fd or plot pca

plot_pca(pcastr, nx, pointplot, harm, expand, cycle)

plot.pca.fd(pcalist, nx = 128, pointplot = T, harm = 0,

expand = 0, cycle = F, ...)

Purpose: Plots the harmonics of a functional principal component analysis.

Arguments: pcafd: (S-PLUS) or pcastr: (MATLAB) (required) In S-
PLUS an object of class pcafd containing the results of a call
to pca.fd. In MATLAB, a struct object containing the results
of a call to pca.

nx: (optional) The number of points at which the functions are to be
evaluated for plotting. For fairly smooth functions, 101 values are
usually enough, but for functions with a lot of fine detail, this may
need to be increased.

pointplot: (optional) If pointplot=T, then the harmonics are plotted
as + and - otherwise lines are used.

harm: (optional) If harm = 0 (the default) then all the computed
harmonics are plotted. Otherwise those in ’harm’ are plotted.

expand: (optional) If expand =0 then effect of +/- 2 standard devi-
ations of each principal component are given otherwise the factor
expand is used.

57

cycle: (optional) If cycle=T and there are 2 variables then a cycle plot
will be drawn. If the number of variables is anything else, cycle
will be ignored.

...: (optional) (S-PLUS only) The additional arguments for controlling
the plot available in the regular function plot.

Returns: none

3.10.3 varmx.pca.fd or varmx pca

varmx_pca(pcastr, nharm, nx)

varmx.pca.fd(pcafdlist, nharm = scoresd[2], nx=50)

Purpose: Apply varimax rotation to the first nharm components of a ’pca.fd’
object.

Arguments: pcafdlist: (S-PLUS) or pcastr: (MATLAB) (required) In
S-PLUS an object of class pcafd, and in MATLAB a struct,
containing the results of a call to pca.

nharm: (optional) The number of harmonics to be rotated. The de-
fault is the number available in pcafdlist for pcastr.

nx: (optional) The number of points at which the functions are to be
evaluated for plotting. For fairly smooth functions, 101 values are
usually enough, but for functions with a lot of fine detail, this may
need to be increased.

Returns: In both languages the return is the same structure and class as for
the principal components analysis function itself, but with the principal
components and scores rotated.

3.11 The Linear Model Functions

The linear model function described below fits the three types of linear models
described in Chapters 12 to 16. At this point the function can only handle a
single functional independent variable.

58

3.11.1 fRegress or fRegress

fRegress(yfdPar, xfdcell, betacell)

fRegress(yfdPar, xfdlist, betalist)

Purpose: To fit a concurrent or point-wise functional linear model. A func-
tional dependent variable is fit by the concurrent or point-wise func-
tional linear model with one or more functional independent variables.
Any of the variables, whether dependent or independent, may be uni-
variate or scalar, in which case the variables are converted to functional
data objects using the constant basis. A functional data object with
a constant basis is in every way equivalent to a univariate or scalar
variable.

Arguments: yfdPar: (required) A fdPar object, a fd object or a numer-
ical vector. This is the dependent functional variable. If yfdPar

is numeric, corresponding a univariate scale variable, then it is
converted to a fd object using a constant basis.

xfdlist: (required) A list in S-PLUS or a cell array in MATLAB, where
it is named xfdcell. Each member of the list contains a fdPar

object, a fd object or a numerical vector corresponding to an
independent variable. As for yfdPar, scalar or numeric vectors
are converted to fd objects with a constant basis.

betalist: (required) A list in S-PLUS or a cell array in MATLAB,
where it named betacell. Each member contains a functional
parameter or fdPar object defining a regression coefficient func-
tion corresponding to an independent variable in xfdlist. Each
member may also define a Lfd object and a smoothing parameter
value to control the roughness of the estimated regression coef-
ficient function. Moreover, if a regression coefficient function is
to be kept at a fixed value rather than estimated, the estimate

member of the fdPar object may be set to F or 0.

Returns: A list in S-PLUS or a struct in MATLAB with the following
members:

yfdPar: the first argument of the call to fRegress.

xfdlist: the second argument of the call to fRegress.

59

betalist: the second argument of the call to fRegress.

betaestlist: A list in S-PLUS or a cell array in MATLAB containing
the estimated regression coefficient functions. Each member is a
fdPar object.

yhatfdobj: A functional data object for the estimated dependent vari-
able.

Cmatinv: Te inverse of the coefficient matrix, needed for function
fRegress.stderr that computes standard errors.

3.11.2 fRegress.stderr or fRegress stderr

fRegress_stderr(fRegressCell, y2cMap, SigmaE)

fRegress.stderr(fRegressList, y2cMap, SigmaE)

Purpose: To compute estimates of the pointwise standard errors of regres-
sion coefficient functions estimated in a call to function fRegress.

Arguments: fRegressList: (required) A list object in S or a cell object
in Matlab that has been computed by a previous call to function
fRegress.

Y2cMap: (required) The matrix mapping from the vector of observed
values to the coefficients for the dependent variable. This matrix
is output by function smooth.basis.

SigmaE: (required) Estimate of the covariances among the residuals,
required for the estimation of confidence intervals. This can only
be estimated from a preliminary analysis.

Returns: A list in S-PLUS or a struct in MATLAB with the following
members:

betastderrlist: A list in S-PLUS or a cell array in MATLAB con-
taining the estimated standard error functions for the regression
coefficient functions. These are only estimated if the y2cmap ar-
gument is supplied.

bvar: the symmetric matrix of sampling variances and covariances for
the matrix of regression coefficients for the regression functions.

60

These are stored column-wise in defining BVARIANCE. This is
only computed if the y2cmap argument is supplied.

C2bMap: The matrix mapping from response variable coefficients to
coefficients for the regression functions.

61

4 Installation Notes

If you are reading this, you probably have already visited one of our web
sites at

http://www.psych.mcgill.ca/faculty/ramsay.html

http://www.functionaldata.org

4.1 MATLAB Installation

To install the Matlab functions and sample analyses in a Windows 98/NT/2000/XP
system, using Matlab Version 5 through 7, follow these instructions, which
will install the Matlab functions, the sample analyses and the data that are
analyzed.

4.1.1 Installing the Matlab functions:

1. Create a directory to contain the Matlab functions. For example, on
my system the directory is

c:\Matlab\fdaM

2. Put the file ”Matlabfunctions.zip” into this directory.

3. Extract the function files, each with extension .m, from this.zip file
using a utility such as WinZip (available on the Web). Each of these
function files will contain a function with the same name as the file,
and possibly some supporting functions only used by this function.
Documentation on the use of the functions is found in the leading lines
of the file.

4. Within this directory, create a subdirectory with the name ”@fd”. That
is, on my system, this would have the path

c:\Matlab\fdaM\@fd

62

This subdirectory will contain functions that are process objects of the
”fd” class. Move the file ”@fd.zip” into this directory, and extract the
function files as you did in step 3.

5. Repeat step 4 with subdirectory names

• @basis containing .zip file basis.zip

• @bifd containing .zip file bifd.zip

• @fdPar containing .zip file fdPar.zip

• @Lfd containing .zip file Lfd.zip

Thus, on my system, these five directories have paths

c:\Matlab\fdaM\@basis

c:\Matlab\fdaM\@bifd

c:\Matlab\fdaM\@fd

c:\Matlab\fdaM\@fdPar

c:\Matlab\fdaM\@Lfd

and each subdirectory should now contain the unzipped functions ap-
propriate to that directory.

4.1.2 Installing the examples:

There are currently nine sample analyses bundled with the data that are
analyzed:

• the gait data, in file gait.zip

• the nondurable goods index, in file goodsindex.zip

• the growth data, in file growth.zip

• the handwriting data, in file handwrit.zip

• the lip movement data, in file lip.zip

• the melanoma data, in file melanoma.zip

63

• the pinch force data, in file pinch.zip

• the refinery data, in file refinery.zip

• the monthly and daily weather data, in file weather.zip

You might consider setting up a separate subdirectory for each of these
analyses, perhaps within a directory ”examples” in the directory containing
the functions set up above.

For each of these analyses and data, move the .zip file with appropriate
name into the appropriate subdirectory. Then extract the files in this file
using WinZip or some other utility.

To run a sample analysis, start Matlab. At the top of each sample anal-
ysis file, with the extension .m, you will find two addpath commands that
attach, respectively, the functions directory, and the directory containing
the sample data. The paths in these commands are what I use in my system,
and you may have to change them to what is appropriate for your system. For
example, at the top of the monthly.m file, you will find the two commands

addpath(’c:\\Matlab\\fdaM’)

addpath(’c:\\Matlab\\fdaM\\examples\\weather’)

that add the needed paths on my system.

4.2 S-PLUS Installation

The S-PLUS software described in these notes is available at either of these
sites.

You must obtain the files named “FDAfuns.s”, contained the actual S-
PLUS functions.

The first time that you invoke S-PLUS to use these functions, you must
use the command

source(’FDAfuns.s’)

to set up the S-PLUS FDA functions.
Note that you may also want to use the Pspline module for estimating

derivatives by spline smoothing. This can be obtained from the web site

http://www.stat.cmu.edu

64

or from Jim Ramsay’s web site, or by ftp from

ego.psych.mcgill.ca/pub/ramsay

The same instructions apply for the Lspline module.

65

References

Clarkson, D. B., Fraley, C., Gu, C. C. and Ramsay, J. O. (2005) S+Functional
Data Analysis User’s Guide. New York: Springer.

Hanselman, D. and Littlefield, B. (2005) Mastering Matlab 7. Upper Saddle
River, NJ: Prentice-Hall.

Ramsay, J. O. and Silverman, B. W. (2002) Applied Functional Data Anal-
ysis. New York: Springer.

Ramsay, J. O. and Silverman, B. W. (2005) Functional Data Analysis, Sec-
ond Edition. New York: Springer.

Venables, W. N. (2002) Modern Applied Statistics with S, Fourth Edition.
New York: Springer.

Venables, W. N. and Ripley, B. D. (2000) S Programming. New York:
Springer.

66

