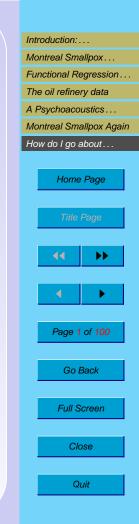
### Modelling Change: Incorporating Dynamic Components into Data Analysis

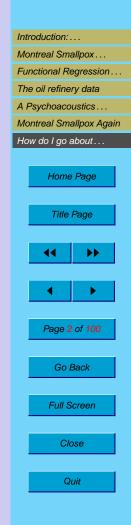
Jim Ramsay and Theo Koulis Department of Psychology

**McGill University** 



#### 1. Introduction: Input/Output Systems

- We often collect data on units over time.
- There is an *output measure*  $y_i(t)$  that reflects the status of a unit *i* at time *t*.
- There are also *input measures*  $z_{ij}(t), j = 1, ..., p$  that indicate the status of various variables thought to affect the output measure.
- We want to study how the status of these units responds to changes in the input variables.
- We especially want to know how a *change* in an input determines the *change* in output.

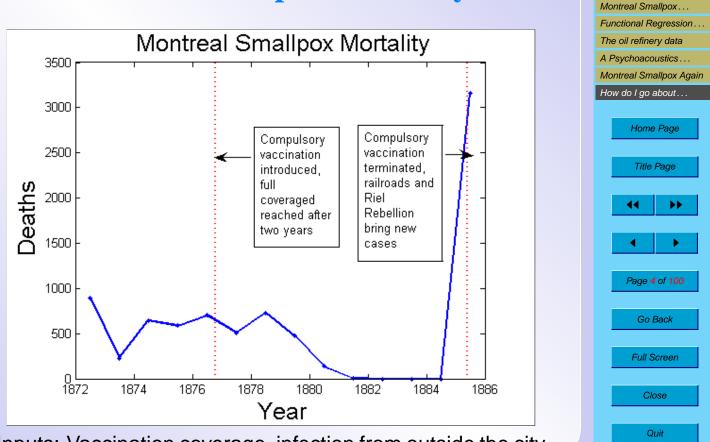


#### Examples

- How is driving performance affected by a couple drinks?
- How are golf scores affected by the purchase of a new set of clubs?
- How is pain intensity affected by a dose of morphine?
- How does tumour size respond to radiotherapy?
- How does a couple's social life respond to the birth of a child?
- How does mortality or the incidence of asthma change with an increase in ozone, particulate matter, or other airborne pollutants?

| Int               | roduction:            |                       |  |
|-------------------|-----------------------|-----------------------|--|
| М                 | ontreal Sm            | allpox                |  |
| Fu                | Functional Regression |                       |  |
| Th                | e oil refine          | ery data              |  |
| A Psychoacoustics |                       |                       |  |
| М                 | ontreal Sm            | allpox Agaiı          |  |
| Нc                | w do I go             | about                 |  |
|                   |                       |                       |  |
|                   | Home                  | e Page                |  |
|                   |                       |                       |  |
|                   | Title                 | Page                  |  |
|                   |                       |                       |  |
|                   | 44                    |                       |  |
|                   |                       |                       |  |
|                   |                       |                       |  |
|                   | •                     |                       |  |
|                   | •                     |                       |  |
|                   | <b>↓</b>              | ► R of 100            |  |
|                   | <b>↓</b><br>Page 3    | ►<br>8 of 100         |  |
|                   |                       |                       |  |
|                   |                       | ▶<br>3 of 100<br>Back |  |
|                   | Go                    | Back                  |  |
|                   | Go                    |                       |  |
|                   | Go                    | Back                  |  |
|                   | Go I<br>Full S        | Back                  |  |
|                   | Go I<br>Full S        | Back<br>Screen        |  |
|                   | Go I<br>Full S<br>Clo | Back<br>Screen        |  |
|                   | Go I<br>Full S<br>Clo | Back<br>Screen        |  |

#### 2. Montreal Smallpox Mortality



Introduction: ...

Inputs: Vaccination coverage, infection from outside the city

#### 3. Functional Regression Analysis

• This sounds like a regression analysis problem that varies over time *t*.

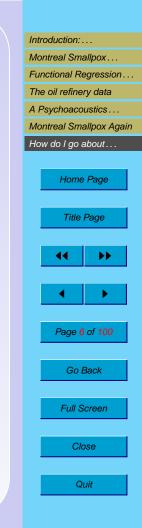
 $y_i(t) = \beta_0(t) + \beta_1(t)z_{i1}(t) + \ldots + \beta_p(t)z_{ip}(t) + \epsilon_i(t)$ 

- The regression coefficients  $\beta_j(t)$  are now functions of time.
- Software for estimating these regression coefficient functions is readily available. See Ramsay and Silverman (2005) *Functional Data Analysis*, Springer, and the website www.functionaldata.org.
- The model is also a variant of the generalized additive or GAM model.

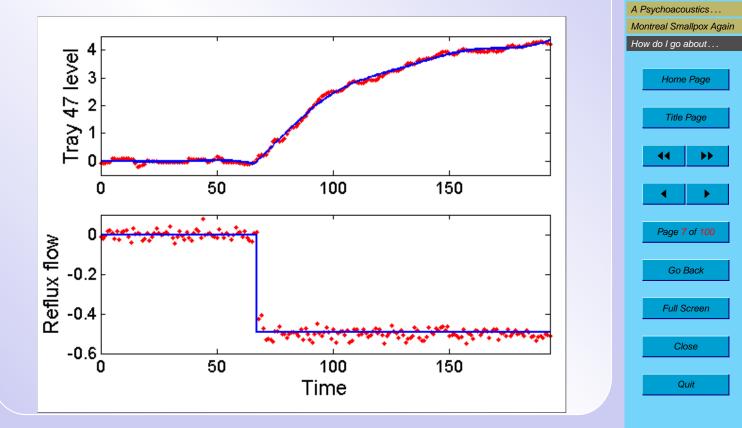
| Introduction:               |  |
|-----------------------------|--|
| Montreal Smallpox           |  |
| Functional Regression       |  |
| The oil refinery data       |  |
| A Psychoacoustics           |  |
| Montreal Smallpox Again     |  |
| How do I go about…          |  |
|                             |  |
| Home Page                   |  |
|                             |  |
| Title Page                  |  |
|                             |  |
|                             |  |
|                             |  |
|                             |  |
|                             |  |
|                             |  |
| Page <b>5</b> of <b>100</b> |  |
|                             |  |
| Go Back                     |  |
| Go Back                     |  |
| Go Back                     |  |
| Go Back<br>Full Screen      |  |
|                             |  |
| Full Screen                 |  |
|                             |  |
| Full Screen<br>Close        |  |
| Full Screen                 |  |

#### 4. The oil refinery data

- This is a simple input/output system in an oil refinery in Corpus Christi, Texas.
- A fluid, called reflux, flows into a tray in a distillation column in an oil refinery.
- The input variable z(t) is the flow rate.
- The level of fluid in the tray is the output variable y(t).



#### **Refinery output** y(t) (top panel) and input z(t) (bottom panel)



Introduction:... Montreal Smallpox...

Functional Regression.. The oil refinery data

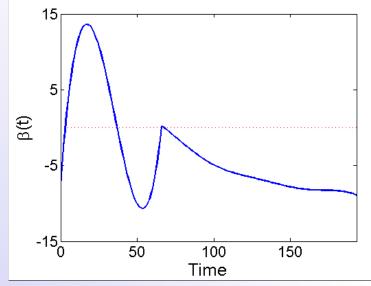
#### Variation on two time scales

- Over the longer scale, tray level changes from an initial level to a final level.
- But we are also interested in how rapidly the change takes place; that is, short-scale variation.

| Introduction:      |                         |                  |  |
|--------------------|-------------------------|------------------|--|
| Montreal Smallpox  |                         |                  |  |
| Fur                | Functional Regression   |                  |  |
| The                | oil refine              | ry data          |  |
| A P                | A Psychoacoustics       |                  |  |
| Мо                 | Montreal Smallpox Again |                  |  |
| How do I go about… |                         |                  |  |
|                    |                         |                  |  |
|                    | Home Page               |                  |  |
| -                  |                         |                  |  |
|                    | Title Page              |                  |  |
| -                  | The Fage                |                  |  |
|                    |                         |                  |  |
|                    |                         |                  |  |
|                    |                         |                  |  |
|                    |                         |                  |  |
|                    | •                       | •                |  |
|                    | •                       |                  |  |
|                    | ◀<br>Page 8             | ►<br>F of 100    |  |
|                    | <b>↓</b><br>Page &      | • of 100         |  |
|                    |                         | • of 100<br>Back |  |
|                    |                         |                  |  |
|                    | Gol                     |                  |  |
|                    | Gol                     | Back             |  |
|                    | Go I<br>Full S          | Back             |  |
|                    | Go I<br>Full S          | Back             |  |
|                    | Go I<br>Full S<br>Cla   | Back             |  |
|                    | Go I<br>Full S<br>Cla   | Back<br>Creen    |  |

#### A functional regression model

$$\mathrm{Tray}(t) = \beta(t) \mathrm{Reflux}(t) + \epsilon(t)$$



But what does this tell us?



# Adding the derivative $D \operatorname{Tray}(t)$ to the output

- Can we also model the *rate of change* in the output, as reflected by the first derivative  $D \operatorname{Tray}(t)$ ?
- Suppose that we model a mixture of the *rate of change* in the output and the the output itself.
- We'll use constants for the regression functions in the hope of keeping things simple.

 $D \operatorname{Tray}(t) + \gamma \operatorname{Tray}(t) = \beta \operatorname{Reflux}(t) + \epsilon(t)$ 

- Coefficient  $\gamma$  controls the relative emphasis on fitting the derivative of the output versus fitting the output itself.
- We estimate  $\gamma = 0.02$  and  $\beta = -0.20$ .

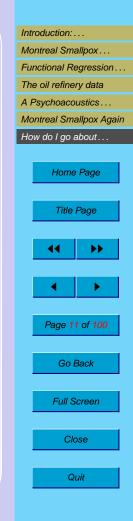


#### Expressing the model as a Differential Equation

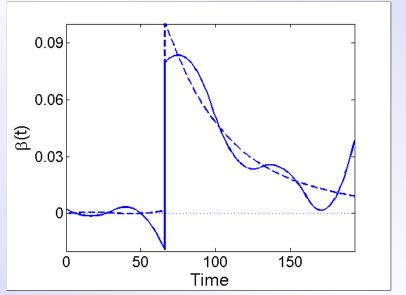
- Models involving derivatives are called *differential equations*.
- They are usually expressed in this rearrangement of our model:

$$D \mathrm{Tray}(t) = -\gamma \mathrm{Tray}(t) + \beta \mathrm{Reflux}(t) + \epsilon(t)$$

• Input Reflux(t) is called a *forcing function*.



### The derivative $D \operatorname{Tray}(t)$ and its estimate



The solid line is the derivative estimated from the data, and the dashed line is the model's fit to this derivative.

Introduction: ... Montreal Smallpox ... Functional Regression ... The oil refinery data A Psychoacoustics... Montreal Smallpox Again How do I go about ... Home Page Title Page Page 12 of 100 Go Back Full Screen Close Quit

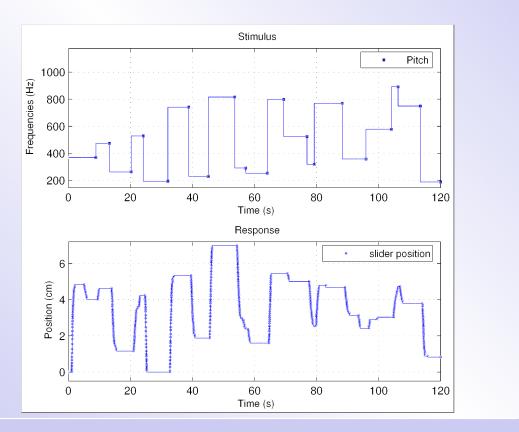


#### 5. A Psychoacoustics Experiment

- This is an input/output system in music cognition.
- Subjects are asked to follow a series of sequential pitches.
- Subjects adjust a slider on a computer input device (potentiometer).
- If the pitch increases  $\rightarrow$  slider position is increased.
- If the pitch decreases  $\rightarrow$  slider position is decreased.

| Introduction:           |  |  |
|-------------------------|--|--|
| Montreal Smallpox       |  |  |
| Functional Regression   |  |  |
| The oil refinery data   |  |  |
| A Psychoacoustics       |  |  |
| Montreal Smallpox Again |  |  |
| How do I go about…      |  |  |
|                         |  |  |
| Home Page               |  |  |
|                         |  |  |
| Title Page              |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
| Page 14 of 100          |  |  |
|                         |  |  |
| Go Back                 |  |  |
|                         |  |  |
| Full Screen             |  |  |
|                         |  |  |
| Close                   |  |  |
|                         |  |  |
|                         |  |  |
| Quit                    |  |  |
| Quit                    |  |  |

## Input z(t) (top panel) and slider output y(t) (bottom panel)



Introduction: ... Montreal Smallpox ... Functional Regression.. The oil refinery data A Psychoacoustics... Montreal Smallpox Again How do I go about ... Home Page Title Page •• Page 15 of 100 Go Back Full Screen Close Quit

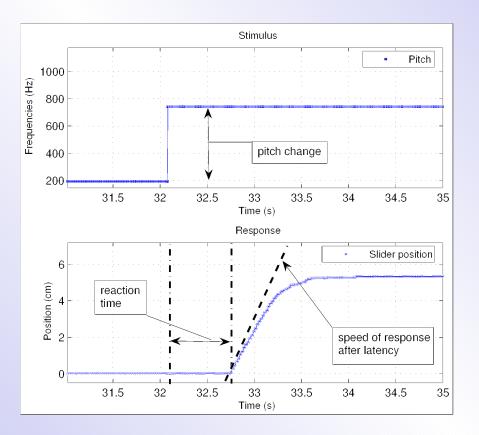
#### **Features of the Slider Data**

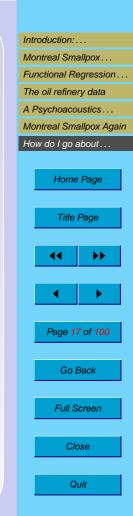
Psychologists are interested in 3 features of the data.

- Reaction Time: the latency between the onset of a fixed stimulus and the response to it.
- Response Speed: a measure of how fast a subject implements the response to the stimulus.
- Gain: the amount of "energy" required to get to a steady state. It is the ratio of "output to input".

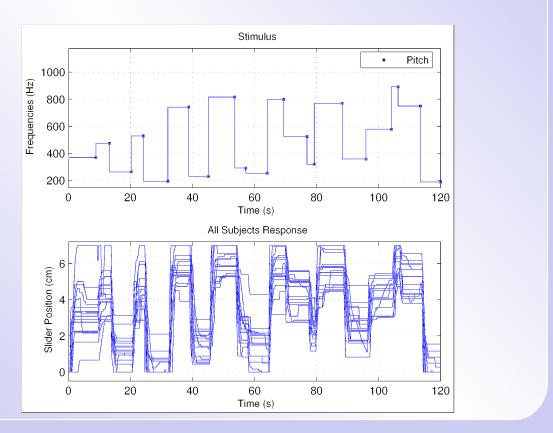
| Intro          | oduction:   |              |
|----------------|-------------|--------------|
| Mor            | ntreal Sm   | allpox       |
| Fun            | ctional Re  | egression    |
| The            | oil refine  | ry data      |
| A P            | sychoaco    | ustics       |
| Mor            | ntreal Sm   | allpox Again |
| Нои            | / do I go a | about        |
|                | Home        | Page         |
| Title Page     |             |              |
|                | ••          | ••           |
|                | •           |              |
| Page 16 of 100 |             |              |
| Go Back        |             |              |
| Full Screen    |             |              |
| Close          |             |              |
|                | Q           | uit          |

#### **Features: Example from Data**





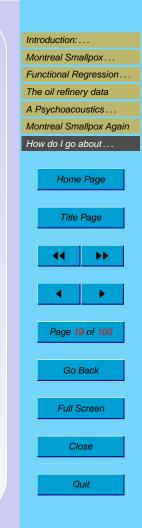
#### **Common stimulus (top panel) and output** y(t) (bottom panel: all subjects)



Introduction: ... Montreal Smallpox ... Functional Regression.. The oil refinery data A Psychoacoustics... Montreal Smallpox Again How do I go about ... Home Page Title Page •• Page 18 of 100 Go Back Full Screen Close Quit

#### **Primary Goal**

- The input variable z(t) is the pitch.
- The position of the slider is the output variable y(t).
- There is a lot of variation across subjects.
- Both inter-subject and intra-subject variation.
- Our goal is to quantify this variation to facilitate comparisons (Calibration)



#### **Using Derivatives: A First Approach**

• A simple 3-parameter model:

 $D\texttt{Slider}(t) = -\gamma\texttt{Slider}(t) + \beta\texttt{Pitch}(t-\delta) + \epsilon(t)$ 

- Slider(t) is the output and Pitch(t) is the forcing function
- Parameters:  $\gamma$ ,  $\beta$ ,  $\delta$
- How do the parameters correspond to the features of the data?
- The parameter  $\delta$  is the reaction time.
- What about the other two?

#### **Defining the Gain and Response Speed**

• Consider the differential equation

 $D\texttt{Slider}(t) = -\gamma\texttt{Slider}(t) + \beta\texttt{Pitch}(t-\delta)$ 

with initial condition Slider(0) = 0.

•  $\operatorname{Pitch}(t)$  is a step function:

$$\mathtt{Pitch}(t) = \begin{cases} 0 & \text{ if } t < 0 \\ P & \text{ if } t \geq 0 \end{cases}$$

• *P* is the change in pitch.



• The solution is

$$\texttt{Slider}(t) = \begin{cases} 0 & \text{if } t < \delta \\ \frac{\beta}{\gamma} P \left( 1 - \exp\left\{ -\gamma(t - \delta) \right\} \right) & \text{if } t \ge \delta \end{cases}$$

• The slider position starts at 0 and increases to a limiting value:

$$\texttt{Slider}^* = rac{eta}{\gamma} P$$

• The ratio

$$G = \frac{\beta}{\gamma} = \frac{\text{Slider}^*}{P}$$

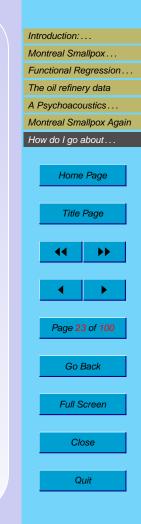
relates the input to the output. We call the ratio G the gain.

- After  $\frac{1}{\gamma}$  time units, Slider(t) has reached 2/3 of the final value Slider\*.
- After  $\frac{2}{\gamma}$  time units: 7/8 of the final value.
- After  $\frac{4}{\gamma}$  time units: 98% of the final value.
- For this reason, we call the ratio

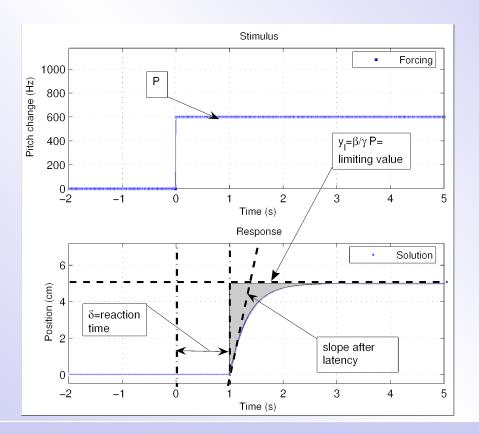
 $\tau = \frac{1}{\gamma}$ 

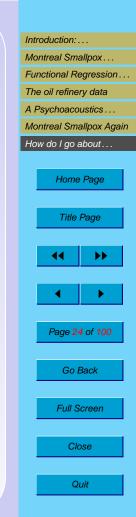
the response time constant.

• The parameter  $\gamma$  is called the response speed.



### **Example:** $P = 600, \delta = 1, \gamma = 3, \beta = 0.025$

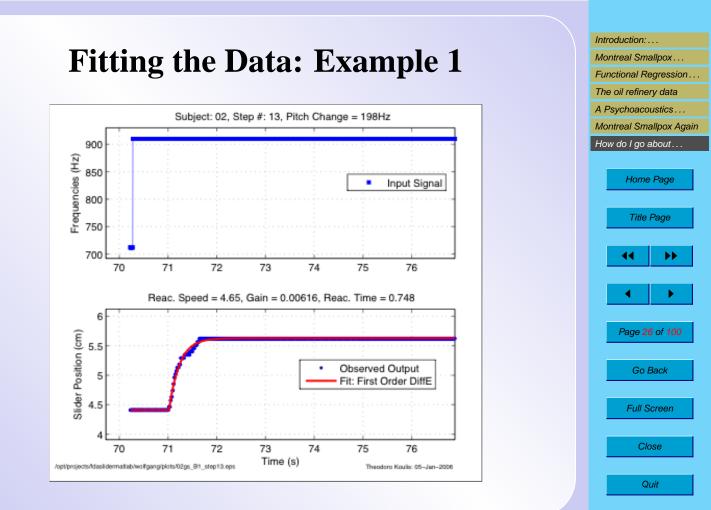




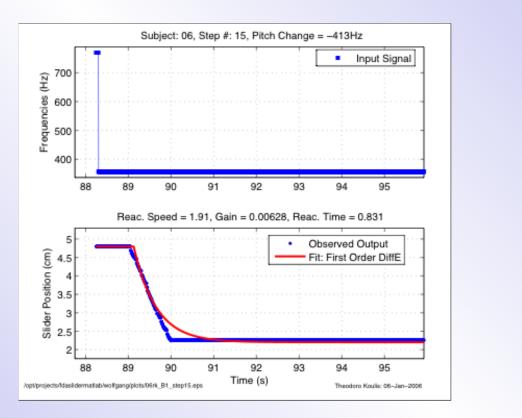
#### **Fitting the Data**

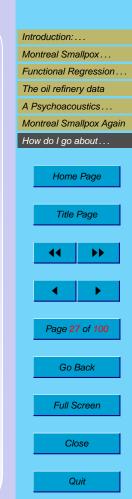
- The model does a good job at capturing the shape of the data curves.
- For most cases, the model seems adequate.
- For a few cases, the model does not fit well.
- Even so, we want to keep the simple model to make interpretation easy.

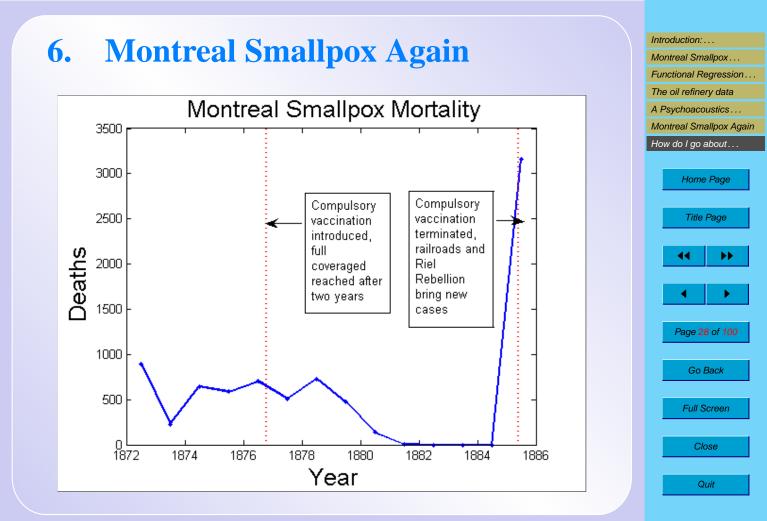




#### Fitting the Data: Example 2







- There is a delay  $\delta$  of about two years before enough vaccination coverage is reached to be effective.
- Then the disease all but disappears in two years, suggesting a time constant  $\tau = 6$  months.
- The epidemic in 1885 goes from just detectable in April to full force in October, suggesting no delay and a time constant of  $\tau = 1.5$  months.
- Once the epidemic was obvious to all, full vaccination coverage was almost immediate, and the disease was under control by the end of the year.
- What's most exciting about the smallpox data is the *rate* of change or dynamics of the system.

| Introduction:           |  |  |
|-------------------------|--|--|
|                         |  |  |
| Montreal Smallpox       |  |  |
| Functional Regression   |  |  |
| The oil refinery data   |  |  |
| A Psychoacoustics       |  |  |
| Montreal Smallpox Again |  |  |
| How do I go about…      |  |  |
|                         |  |  |
| Home Page               |  |  |
|                         |  |  |
| Title Page              |  |  |
| - Thie Page             |  |  |
|                         |  |  |
| <b>44 &gt;&gt;</b>      |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
| Page 29 of 100          |  |  |
|                         |  |  |
|                         |  |  |
| Go Back                 |  |  |
| Go Back                 |  |  |
| Go Back<br>Full Screen  |  |  |
|                         |  |  |
| Full Screen             |  |  |
|                         |  |  |
| Full Screen<br>Close    |  |  |
| Full Screen             |  |  |

# 7. How do I go about modelling change?

Consider that there are three basic features of how a system responds to a change in input:

- How quickly does the change take place? ( $4/\gamma = 4\tau$  time units)
- How much change happens? ( $\beta/\gamma = \beta\tau$  output units per input unit)
- How long before the change begins? ( $\delta$  time units)

There are other things to model, too, but these are the big three.

More exotic characteristics of how the output responds to a change in input might require the use of higher order derivatives, such as  $D^2y(t)$  and etc.

| Introduction:           |  |
|-------------------------|--|
| Montreal Smallpox       |  |
| Functional Regression   |  |
| The oil refinery data   |  |
| A Psychoacoustics       |  |
| Montreal Smallpox Again |  |
| How do I go about…      |  |
| Home Page               |  |
| Title Page              |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
| Page 30 of 100          |  |
| Go Back                 |  |
| Full Screen             |  |
| Close                   |  |
| Quit                    |  |

# Extending the basic regression equation

- Set down a time-varying regression equation, with the output y(t) on the left side and various inputs  $z_j(t)$  on the right. Some of the inputs can, of course, be constant.
- Each input is multiplied by its regression coefficient function  $\beta_j(t)$ , which, of course, can be constant if desired.
- Now consider replacing the output y(t) by a mixture or linear combination of y(t) with one or more of its derivatives, Dy(t),  $D^2y(t)$  and etc. y(t) and other lower-order derivatives are multiplied by weight functions  $\gamma(t)$ .
- Add delay parameters as required.

| Introduction:         | Introduction:     |  |  |
|-----------------------|-------------------|--|--|
| Montreal Smallpo      | Montreal Smallpox |  |  |
| Functional Regre      | ssion             |  |  |
| The oil refinery data |                   |  |  |
| A Psychoacoustics     |                   |  |  |
| Montreal Smallpo      | x Again           |  |  |
| How do I go abou      | ıt                |  |  |
| Home Pag              | ye 🛛              |  |  |
| Title Page            |                   |  |  |
| ••                    | ••                |  |  |
| •                     | •                 |  |  |
| Page 31 of 100        |                   |  |  |
| Go Back               |                   |  |  |
| Full Screen           |                   |  |  |
| Close                 |                   |  |  |
| Quit                  |                   |  |  |

# How do I actually fit data with a dynamic model?

- Visit the website www.functionaldata.org to find software in R, S and Matlab along with worked examples.
- Consider buying *Functional Data Analysis*; all the analyses illustrated in the book are also available on the website.

