An Overview of the Functional Linear Model

We want to see where these lectures on the functional linear model will go. A functional analysis of ... A scalar response and ... A functional response Predicting derivatives What exactly makes a . . . Home Page •• Page 1 of 13 Go Back Full Screen Close Quit

- Four functional linear models for the daily weather data.
- A functional ANOVA for precipitation.
- Predicting total annual precipitation from the temperature profile.
- Predicting today's precipitation from today's temperature.
- Predicting the entire year's precipitation from the year's temperature profile.
- A short-term feed-forward model for precipitation.
- A more general perspective.
- Predicting precipitation dynamics: a differential equation
- The idea of a linear model reviewed.

The average Canadian weather data

- 35 Canadian weather stations selected to cover the country.
- Daily temperatures (0.1 degrees Celsius) and precipitations (0.1 mm) averaged over the years 1960 to 1994. (Feb 29th combined with Feb. 28th).
- Canada divided into Atlantic, Continental, Pacific and Arctic weather zones.

A functional analysis of
A scalar response and
A functional response
Predicting derivatives
What exactly makes a
Home Page
Title Page
44 >>
Page 3 of 13
Go Back
Full Screen
Close
Quit

1. A functional analysis of variance

- Does the precipitation profile vary from one weather zone to another?
- We have a number N_g of weather stations in each climate zone $g=1,\ldots,4,$ and
- the model for the *m*th temperature function in the *g*th group, indicated by Prec_{mg}, is

$$\texttt{Prec}_{mg}(t) = \mu(t) + \alpha_g(t) + \epsilon_{mg}(t).$$

- $\mu(t)$ is the grand mean function, summarizing precipitation for all of Canada.
- $\alpha_g(t)$ is the functional effect of being in weather zone g
- In order to fix zone effects, we require that

$$\sum_{g} lpha_{g}(t) = 0$$
 for all g

A functional analysis of		
A scalar response and		
A functional response		
Predicting derivatives		
WI	hat exactly	makes a
	Home Page	
	Title Page	
		rugo
	••	
	•	
	•	
	↓ Page	5 of 13
	↓ Page	• 5 of 13
		5 of 13 Back
	Go	
	Go	Back
	Go i Full S	Back
	Go i Full S	Back Screen
	Go i Full S Cla	Back Screen

2. A scalar response and a functional independent variable

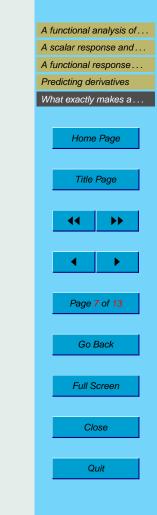
• The response is the log total annual precipitation

$$\texttt{PrecTot}_i = \int_0^{365} \texttt{Prec}_i(t) \, dt$$

• The model is

$$\log(\operatorname{PrecTot}_i) = \alpha + \int_0^{365} \operatorname{Temp}_i(s)\beta(s)\,ds + \epsilon_i\,.$$

- But here we have a real problem. How to avoid overfitting the 35 scalar observations?
- We'll use regularization or roughness penalties on the estimated regression functions.



3. A functional response and a functional independent variable

This is a big topic, and breaks down into several useful special versions.

3.1. The concurrent functional model

- We might only use the temperature at the same time s = t because we imagine that precipitation now depends only on the temperature now.
- Our model is

$$\operatorname{Prec}_i(t) = \alpha(t) + \operatorname{Temp}_i(t)\beta(t) + \epsilon_i(t)$$

- We might call this model concurrent or point-wise.
- Should we use regularization to force β to be smooth in t?

3.2. The annual or total model

- We may prefer to allow for temperature influence on ${\tt Prec}(t)$ to extend over the whole year.
- The model expands to become

$$\mathrm{Prec}_i(t) = \alpha(t) + \int_0^{365} \mathrm{Temp}_i(s)\beta(s,t)\,ds + \epsilon_i(t)$$

- The value $\beta(s,t)$ determines the impact of temperature at time s on precipitation at time t.
- \bullet We need roughness penalties for variation in both s and t

3.3. The limited-term feed-forward model

• it may be that what counts is whether the temperature has been falling rapidly up to time *t*. The model expands to

$$\mathtt{Prec}_i(t) = \alpha(t) + \int_{t-\delta}^t \mathtt{Temp}_i(s)\beta(s,t)\,ds + \epsilon_i(t)$$

- \bullet Here δ is the time lag over which we use temperature information.
- Now β is only defined over the somewhat complicated trapezoidal domain: $t \in [0, 365], t \delta \le s \le t$.

A functional analysis of		
A scalar response and		
A functional response		
Predicting derivatives		
What exactly makes a		
Hoi	me Page	
Title Page		
44		
•		
•	•	
↓ Page	► 10 of 13	
↓ Page	► 10 of 13	
	• 10 of 13 o Back	
G		
G	o Back	
G Ful	o Back I Screen	
G Ful	o Back	
G Ful	o Back I Screen	

3.4. The local influence model

- Finally, we may open up the model to allow integration over s within a t-dependent set Ω_t .
- The model may therefore be

$$\mathrm{Prec}_i(t) = \alpha(t) + \int_{\Omega_t} \mathrm{Temp}_i(s) \beta(s,t) \, ds + \epsilon_i(t)$$

4. Predicting derivatives

- When the response is a derivative, then there is the potential for the function itself to be a useful covariate.
- The concurrent linear model

 $D \operatorname{Prec}_i(t) = \operatorname{Prec}_i(t) \beta(t) + \epsilon_i(t)$

is a *homogeneous first order linear differential equation* in precipitation.

• If we also include an influence of temperature,

 $D \operatorname{Prec}_i(t) = \operatorname{Prec}_i(t)\beta_0(t) + \operatorname{Temp}_i(t)\beta_1(t) + \epsilon_i(t),$

the equation is said to be forced or nonhomogeneous.



5. What exactly makes a model linear?

- We see that the functional linear model has a lot more variants than it's poor multivariate cousin.
- We will need to look at a definition of a linear model that encompasses these models and many others.

