Functional principal
components analysis
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analysis

e PCA is usually used when we want to find the dominant
modes of variation in the data, usually after subtracting
the mean from each observation.

e We want to know how many of these modes of variation
are required to achieve a satisfactory approximation to
the original data.

e [t may be assumed that keeping only dominant modes
will improve the signal-to—noise ratio of what we keep.

e We usually want to know what these modes represent
in terms that we can explain to non—statisticians. Rota-
tion of the principal components can help at this point.
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2. Defining functional PCA

e Let's see what changes when we go from the multivari-
ate version to the functional version.

e The short answer: Summations change into integra-
tions




Multivariate PCA

. Find principal component weight vector &, =
(&11, - -+, €)' for which the principal components scores
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maximize ) . f2 subject to
2@21 - H€1H2 = 1.
j

. Next, compute weight vector &, with components ¢;,
and principal component scores maximizing . f3,
subject to the constraint ||£€,||* = 1 and the additional

constraint
> &k = &6 =0.
j

. and so on as required.
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Functional PCA

. Find principal component weight function & (s) for which
the principal components scores

fa :/51(3)%'(3) ds

maximize >, f3 subject to
[ étsrds= e =1.

. Next, compute weight function & (s) and principal com-
ponent scores maximizing » . f4, subject to the con-
straint ||&,]|> = 1 and the additional constraint

/52(3)51(3) ds = 0.

. and so on as required.
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3. A PCA of monthly temperature
curves

e We have 30-year average temperatures for each month
and for each of 35 Canadian weather stations.




The centered monthly temperature
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What do we see?

e An impression that some curves are high (warm) and
that some curves are low (cold).

e Also that some curves have larger variation between
summer and winter than others.

e How much of the variation do these two types of varia-
tion account for?
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Correlation

The correlation surface
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What do we see?

e The diagonal ridge corresponding to unit correlation be-
tween temperatures at identical times.

e The ridge perpendicular to this corresponding to cor-
relations between temperatures symmetrically placed
around mid—summer.

e Correlations fall off much more rapidly for times sym-
metric about March and September 21.
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The first four principal components
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What do we see?

e The two components that we saw in the centered
curves account for about 98% of the variation.

e The first four components account for 99.8% of the vari-
ation.

e The first four components tend to look like linear,
guadratic, cubic and quartic polynomials, respectively.
Why is that?

e |t can help to plot the components by adding and sub-
tracting a multiple of them from the mean function.
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The first four principal components +/-
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The first two principal component
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What do we see?

e Most stations are along a curved line running from lower
center to top right.

e At the top end of the banana are maritime stations with
less variation between winter and summer, and high av-
erage temperatures.

e At the lower end are the continental stations with large
seasonal variation and lower average temperatures.

e The Arctic stations are in their own space with large
seasonal variation and very low average temperatures.
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4. Perspectives and rotations
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Principal components as empirical
orthogonal functions

e We can think of principal components as a set of or-
thogonal basis functions constructed so as to account
for as much variation at each stage as possible.

e In fact, they are often used as just that: A compact basis
for approximating the data with as few basis functions
as possible.

e They come out looking like polynomials of increasing
degree because dominant variation tends to be smooth
(i. e. nearly constant or linear), and subsequent com-
ponents pick up variation that declines in smoothness,
and is also required to be orthogonal to previous com-
ponents. Just like orthogonal polynomials!




Rotating principal components

e Once we have a set of orthogonal components span-
ning as much variation as we desire, we can always
rotate these orthogonally to get a new set spanning the
same space.

e The advantage is that rotated components may be eas-
ler to interpret.

e The VARIMAX rotation method is often used in the so-
cial sciences to improve interpretability.

e Functional principal components can be rotated in this
way as well.
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Rotated principal components for
temperature

Rotated PC 1 (40.7%)
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Rotated PC 2 (9.2%)

Rotated PC 4 (18.1%)
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What do we see?

e The total variation accounted for remains the same,
99.8%.

e The first two components now account for a less over-
whelming amount of the variation.

e Each rotated component now accounts for departure
from the mean for a small part of the year.

e These are much easier to interpret. Components 1 and
3 are the most important, and account for deviation from
the mean in mid—winter and in the fall, respectively.
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How many principal components can
be computed?

e In the multivariate case, the upper limit is the number of
variables.

e In the function case, “variables” correspond to values of
t, and there is no limit to these.

e Instead, the upper limit is the number N of observa-
tions, or N — 1 if the functions are centered.

e But in some cases, the number of basis functions K will
be less than [V, and in this case K is the upper limit.

e We usually stop far short of either of these limits, how-
ever.
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What if the functions are themselves
multivariate?

e This often arises if the functions are spatial coordinates,
| X(t),Y(t), Z(t)] or angular coordinates. Then we want
to study their simultaneous variation, rather than sepa-
rately.

e The solution is simple: Make a single synthetic function
by joining them together, compute it's principal compo-
nents, and separate out the parts belong to each coor-
dinate.
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What if | had a mixture of functional
and scalar variables?

e This often happens. We could study the components of
simultaneous variation in temperature profiles and log
total annual precipitation, for example.

e Or the simultaneous variation in growth acceleration
curves and the parents’ adult stature.

e Ramsay and Silverman (1997, 2004) show that this,
too, can be converted to a matrix eigenequation.




5. How are functional principal com-  messsmsea
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ponents computed? Pesesives i
e In multivariate statistics, we solve the eigenequation e
E=e |
wher? | | | > ]
—V is the sample varlance-coI/a/rlance matrix .
VXX e |

where, in turn, X is the centered data matrix.

— £ is an eigenvector of V. —
— p is an eigenvalue of V. S
e Usually, however, we actually use the correlation matrix _oee |
R instead of V so as to eliminate uninteresting scale B

differences between variables.



What IS the function version of the
eigenequation?

o et N
v(s,t) = N~! Z ;(8)z;(t)

where usually functions z;(¢) have been first centered.
e v(s,t) is the sample variance-covariance function.

e The functional eigenequation is
[ vis vyt = pets

e pis still an eigenvalue, but now £(s) is an eigenfunction
of the variance-covariance function.

e There is much less reason for using the correlation

function r(s, t) since function values all have the same
tinite or <cale
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How do we solve for pairs of
eigenvalues and eigenfunctions?

e Suppose that the observed functions are expanded in
terms of a vector ¢(t) of K basis functions

X(t) = Co(t)
e and the jth eigenfunction the expansion
&(s) = Bip(s) .

e Substituting these expansions into the equation for
v(s,t) gives us

v(s,t) = N1 (s)C'Cop(t)
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e The eigenequation becomes

The goal of principal ...

Hrgleiet / HENP ) 13y = e o), L

e Define order K matrix e
1= [eear e |
so that the eigenequation is now .
N_1¢/<S)C/Cij _ p¢,(3)bj --
| _ RN

e This equation has to be true for all argument values s,
and consequently, | couz |
N~'C'Cb; = pb; .

e subject to the constraint ||£]|> = 1, which becomes

T




e if we define
Uj = J1/2bj

e then we have the symmetric eigenequation
N312C'Ci?u; = pu,

subject to the constraint

e We can then use standard software to solve for the
eigenvectors u; and back-solve to get the required co-

efficient vectors
bj = J_1/2Uj

for computing the eigenfunctions &;(s).
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Suppose that | wanted to impose a
roughness penalty org;(s)

e Indeed. If the data are rough, the eigenfunctions will be,
too, unless we force them to be smooth.

e Skipping some technicalities, if we penalize || D?*¢||?,

for example, we find that £ satisfies the modified

eigenequation

/ o(s, DE(H) dt = ple(s) + AD'E(s)

e This, too, can be converted to an equivalent matrix
equation that is solvable with standard software.
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