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Smoothing Data with
Roughness Penalties



Why do we use . . .

Defining smoothness

Penalized least . . .

Spline Smoothing

Choosing smoothing . . .

A simulation study

Confidence limits

Summary

Home Page

Title Page

JJ II

J I

Page 2 of 100

Go Back

Full Screen

Close

Quit

1. Why do we use roughness penal-
ties?



Why do we use . . .

Defining smoothness

Penalized least . . .

Spline Smoothing

Choosing smoothing . . .

A simulation study

Confidence limits

Summary

Home Page

Title Page

JJ II

J I

Page 3 of 100

Go Back

Full Screen

Close

Quit

• Controlling smoothness by limiting the number of basis
functions is discontinuous; roughness penalties allow
continuous control over smoothness.

• We want to be able to define “smooth” in ways that are
appropriate to our problems.

– We may want a smooth derivative rather than just a
smooth function.

– What is smooth in one situation is not smooth in an-
other. Smoothness has to be defined differently for
periodic functions, for example.

• We find that roughness penalty smoothing gives better
results.

• Roughness penalties are connected to fitting data by a
differential equation; they are models for process dy-
namics.
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2. Defining roughness



Why do we use . . .

Defining smoothness

Penalized least . . .

Spline Smoothing

Choosing smoothing . . .

A simulation study

Confidence limits

Summary

Home Page

Title Page

JJ II

J I

Page 5 of 100

Go Back

Full Screen

Close

Quit

We have two competing objectives:

1. Fit the data well; keep bias low.

2. Keep the fit smooth so as to

• filter out noise
• get better estimates of derivatives

Mean squared error = Bias2 + Sampling V ariance

We can often greatly reduce MSE by trading a little bias off
against a lot of sampling variance.
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Quantifying roughness

• The classic: curvature in the function

PEN2(x) =

∫
[D2x(s)]2 ds .

[D2x(s)]2 measures the squared curvature in x at s.
This penalty measures squared total curvature.

• Curvature in acceleration:

PEN4(x) =

∫
[D4x(s)]2 ds

• These two penalties also define what we mean by
“smooth”; any function that has zero penalty is “hyper–
smooth.” A straight line for the classic, a cubic polyno-
mial for the acceleration penalty.
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Harmonic acceleration

• If the process is periodic, it is natural to think of a
constant + sinusoid as “hyper–smooth”.

• This suggests that we use

PENH(x) =

∫
[D3x(s) + ω2Dx(s)]2 ds

where 2π/ω is the period.

• The functions 1, sin(ωt), and cos(ωt) all have zero
penalties, as does any linear combination of them.

• Writing
Lx(s) = D3x(s) + ω2Dx(s)

we have

PENH(x) =

∫
[Lx(s)]2 ds
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Some questions to think about

• Can we think of other differential operators L that might
be useful?

• If we have a small number of “hyper–smooth” functions
in mind, can we find a differential operator L that will
assign zero penalty to them?

• Can use the data themselves to tell us something about
the right differential operator L?
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3. Penalized least squares estimation



Why do we use . . .

Defining smoothness

Penalized least . . .

Spline Smoothing

Choosing smoothing . . .

A simulation study

Confidence limits

Summary

Home Page

Title Page

JJ II

J I

Page 10 of 100

Go Back

Full Screen

Close

Quit

• – y is the n-vector of data yj to be smoothed.
– t is the n-vector of values of tj.
– W is a symmetric positive definite weight matrix.
– x(t) is the n-vector of fitted values, and x(t) has the

basis function expansion

x(t) =

K∑
k

ckφk(t) = c′φ(t)

• The penalized least squares criterion is

PENSSEλ(x|y) = [y − x(t)]′W[y − x(t)] + λ PEN(x) ,
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How the smoothing parameter works
Smoothing parameter λ controls the amount of roughness.

• As λ → 0, roughness matters less and less, and x(t)
fits the data better and better.

• As λ → ∞, roughness matters more and more, and
x(t) becomes more and more “hyper–smooth.”

• Our job is to find the right value where we trade enough
bias off against sampling variance to minimize mean
squared error.
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The roughness penalty matrix

• For the classic penalty,

PEN2(x) =

∫
[D2c′φ(t)]2 dt

= c′
∫

[D2φ(t)][D2φ′(t)] dt c

= c′Rc (1)

• The order K roughness penalty matrix R is

R =

∫
[D2φ(t)][D2φ′(t)] dt =

∫
(D2φ)(D2φ′)

• substitute L for D2 for more general roughness penal-
ties.
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The roughness penalized estimates for
c and y

• Φ is the n by K matrix of basis function values φk(tj).

• The penalized least squares criterion becomes

PENSSE(y|c) = (y −Φc)′W(y −Φc) + λc′Rc .

• This is quadratic in c, and is minimized by

ĉ = (Φ′WΦ + λR)−1Φ′Wy .
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The smoothing matrix Sφ,λ

• The data-fitting vector ŷ = x(t) is

ŷ = Φ(Φ′WΦ + λR)−1Φ′Wy ,

• Smoothing matrix

Sφ,λ = Φ(Φ′WΦ + λR)−1Φ′W

maps the data into the fit, and has many useful applica-
tions.



Why do we use . . .

Defining smoothness

Penalized least . . .

Spline Smoothing

Choosing smoothing . . .

A simulation study

Confidence limits

Summary

Home Page

Title Page

JJ II

J I

Page 15 of 100

Go Back

Full Screen

Close

Quit

Equivalent degrees of freedom df(λ)

• It is useful to compare a fit using a roughness penalty
to one using a fixed number of basis functions.

• A measure of the “degrees of freedom” in a roughness
penalized fit is

df(λ) = trace Sφ,λ

• This corresponds to the number of basis functions K in
an un–penalized fit.
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4. Spline Smoothing
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• The term “smoothing spline” has come to mean the fol-
lowing procedure:

– Use natural or B-spline basis functions.
– Place a knot at each data point tj.
– Use a penalty on D2x.

• However, we find that

– We can often achieve the same results by just using
a number K of basis functions that is “large” relative
to the resolution of the data.

– We certainly want to be able to play with alternative
roughness penalties.

– Other basis functions systems are also desirable.
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Two estimates of an acceleration curve.
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5. Choosing smoothing parameter λ
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Cross–validation for choosing the
smoothing parameter λ

• In cross–validation,we

– set aside a subset of data, the validation sample
– call the balance of the data the training sample
– fit the model to the training sample
– assess fit to the validation sample
– choose the λ value that gives the best fit
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• We can also, for a sequence of values of λ,

– set aside each observation (tj, yj) in turn
– fit the data with the rest of the sample,
– sum fits to the left out values to get a cross–validated

error sum of squares CV(λ).
– select the λ value that minimizes CV(λ).
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Generalized cross–validation for
choosing the smoothing parameter λ

• Cross-validation is time-consuming, and tends too often
to under–smooth the data.

• The generalized cross-validation criterion is

GCV (λ) = (
n

n− df(λ)
)(

SSE

n− df(λ)
)

where df is the equivalent degrees of freedom of the
smoothing operator.

• The right factor is just the unbiassed estimate s2
e of

residual variance familiar in regression analysis.

• The left factor further “discounts” this measure further
to allow for the influence of optimizing with respect to λ.
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6. A simulation study
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• How does GCV work in a simulated data example?

• A parametric growth model by Pierre Jolicoeur at the
Université de Montréal offers a nice test problem.

• We simulate 1000 samples, each observation being a
random sample from realistic Jolicoeur models plus re-
alistic error.

• We smooth using a range of values of λ, and note the
value giving the best value of GCV.

• How well do we estimate the Jolicoeur acceleration
curves?
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20 Jolicoeur acceleration curves
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GCV and Root-Mean-Squared-Error
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What we see

• In the top panel, GCV favors λ = 0.1.

• This is about right for optimal MSE for ages 8 and 16,
but less smoothing would be better for age 12, in the
middle of the pubertal growth spurt.

• One smoothing parameter value does not work best for
all ages, but

• The value chosen by GCV certainly does a fine job.
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RMSE, Bias, and Standard Error
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What we see

• The performance of the spline smoothing estimate de-
teriorates badly at the extremes.

• The sharp curvature at the pubertal growth spurt also
causes some problems.

• Except at the extremes and PGS, the bias is negligible.

• The standard error is about the same as RMSE.

• Would we do better at the extremes if the smooth re-
spected monotonicity?
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7. Confidence limits
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• Because the mapping from data y to the coefficient vec-
tor c is linear, it is a simple matter to work out the stan-
dard error of any linear functional of a curve defined by
c.

• The variance of a quantity ρ(x) associated with linear
mapping M from ĉ to ρ̂(x) is

Var[ρ̂(x)] = MSφ,λΣeSφ,λM′

• Simple, that is, if we can get a good estimate of the
variance-covariance matrix Σe of the residual vector.
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95% point–wise confidence limits for
growth acceleration
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8. Summary
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• Roughness penalization, also called regularization, is a
flexible and effective way to ensure that an estimated
function is “smooth.”

• We can tailor the definition of “smooth” to our needs.

• The roughness penalty idea extends to any type of func-
tional parameter that we want to estimate from the data.

• Roughness penalties are one of the main ways in
which we exploit the smoothness that we assume in the
process generating the data.

• “Roughness” is like energy in physics; roughness re-
quires energy to produce, and smoothness implies lim-
ited energy.

• Where we imagine that the amount of energy behind
the data is limited, it is natural to assume smoothness.


