Modeling functional responses with multivariate covariates

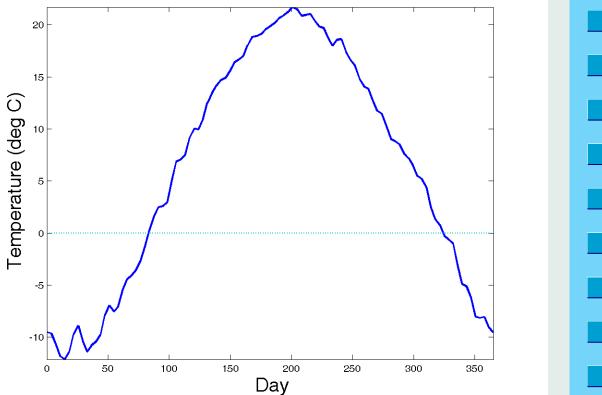
1. Predicting temperature curves from climate zones

- We have 35 weather stations distributed across four climate zones:
 - Atlantic (16)
 - Pacific (6)
 - Continental (13)
 - Arctic (4)
- The dependent variable is $\operatorname{Temp}(t)$, a function representing daily temperatures.
- The temperature functions were obtained by expanding the original 365 discrete daily averages in terms of 65 Fourier basis functions.

Predicting temperature				
Estimating the				
Defining functional				
Home Page				
Tiome Page				
Title Page				
44 >>				
Page 2 of 26				
Go Back				
GU Dack				
Full Screen				
Close				
Quit				

Montreal's temperature profile

Predicting temperature ... Estimating the ... Defining functional... Home Page Title Page Page 3 of 26 Go Back Full Screen Close Quit



The functional ANOVA model

• The model is

$$\mathrm{Temp}_{mg}(t) = \mu(t) + \alpha_g(t) + \epsilon_{mg}(t).$$

- $\bullet~\mu$ is the grand mean function
- α_g are the specific effects on temperature of being in climate zone g. To be able to identify them uniquely, we require that they satisfy the constraint

$$\sum_{g} \alpha_g(t) = 0 \text{ for all } t. \tag{1}$$

• ϵ_{mg} is the residual function showing unexplained variation specific to the *k*th weather station within climate group *g*.

Setting up the model

- Set up a 35 by 5 matrix Z. Column 1 contains all 1's, and columns $g + 1, g = 1, \ldots, 4$ contain zeros except for 1's in rows corresponding to stations in climate zone g.
- Append a final row with 0 in column 1, and 1's in the remaining columns.
- Let the functional response vector $\mathbf{Temp}(t)$ contain the 35 temperature profiles *plus* a final function that is zero for all t.
- Let functional regression coefficient vector $\beta(t)$ contain the functions $(\mu, \alpha_1, \dots, \alpha_4)$.
- The model in matrix notation,, including the zero sum constraint, is

Temp =
$$\mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Predicting temperature		
Estimating the		
Defining functional		
Home Page		
Title Page		
Page 5 of 26		
Go Back		
Full Screen		
Close		
Quit		

Fitting the model

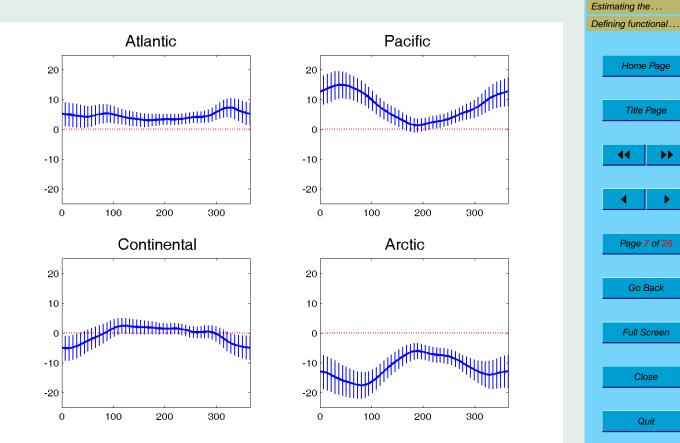
- The residual $\operatorname{Temp}_i(t) \mathbf{Z}_i \boldsymbol{\beta}(t)$ is now a function.
- The least squares fitting criterion becomes

$$\mathrm{LMSSE}(\pmb{\beta}) = \sum_{g}^{4} \sum_{m}^{N_{g}} \int [\mathrm{Temp}_{mg}(t) - \sum_{j}^{q} z_{(mg),j} \beta_{j}(t)]^{2} \, dt$$

• This is minimized with respect to the regression functions by

 $\hat{\boldsymbol{\beta}(t)} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Temp}(t)$

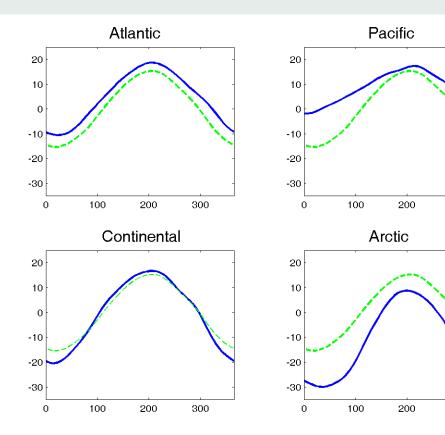
The region effects $\alpha_g(t)$



Predicting temperature ...

Þ

The mean plus region effects $\mu(t) + \alpha_g(t)$



Predicting temperature ... Estimating the ... Defining functional... Home Page Title Page >> Page 8 of 26 Go Back Full Screen Close Quit

300

300

2. Assessing fit

- Is there significant variation in temperature over climate zones? Of course there is! This does not seem like an interesting question.
- On the other hand, whether the Atlantic Pacific and Continental stations are significantly different in the summer might be.
- Interesting summaries of fit, of effects, and inferences are likely to be *local* in nature.

Predicting temperature		
Estimating the		
Defining functional		
Home Page		
Title Page		
Page 9 of 26		
Go Back		
Full Screen		
Close		
Quit		

• It is useful to use the error sum of squares function

$$\label{eq:SSE} \begin{split} \mathtt{SSE}(t) &= \sum_{mg} [\mathtt{Temp}_{mg}(t) - \mathbf{Z}_{mg} \hat{\boldsymbol{\beta}}(t)]^2. \end{split}$$

to assess fit at or near time t.

• As in ordinary regression, we can compare this to the variation of the response about its mean

$$\mathrm{SSY}(t) = \sum_{mg} [\mathrm{Temp}_{mg}(t) - \hat{\mu}(t)]^2$$

• The corresponding mean squared error functions are

$$\texttt{MSE}(t) = \texttt{SSE}(t)/\texttt{df}(\text{error})$$

$$\mathrm{MSR}(t) = \frac{\mathrm{SSY}(t) - \mathrm{SSE}(t)}{\mathrm{df}(\mathrm{model})}$$

Multiple correlation and F-ratio functions

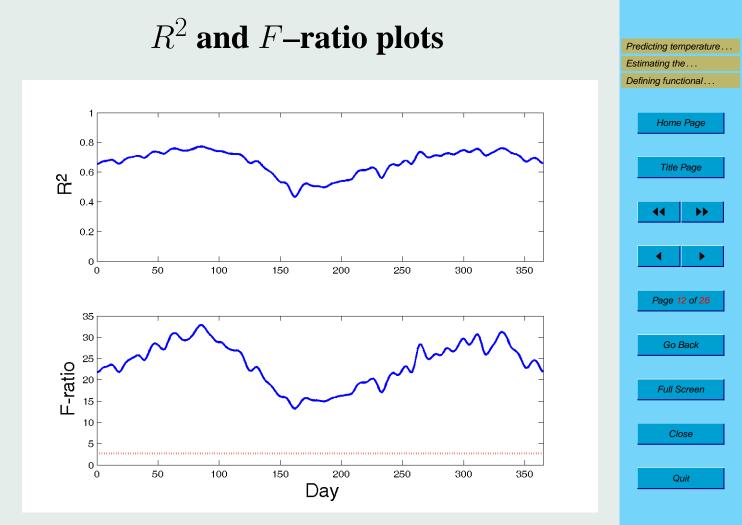
• The squared multiple correlation function is

 $\mathtt{RSQ}(t) = [\mathtt{SSY}(t) - \mathtt{SSE}(t)] / \mathtt{SSY}(t).$

• and the F-ratio function is

$$\mathrm{fratio}(t) = \frac{\mathrm{MSR}(t)}{\mathrm{MSE}(t)}.$$

Predicting temperature			
Estimating the			
Defining functional			
Home Page			
Title Page			
Page 11 of 26			
Go Back			
Full Screen			
Close			
Quit			



- 3. Estimating the regression functions $\beta_j(t)$
 - We want a general framework for estimating functional parameters in this and other linear models.
 - A critical issue is being able to penalize the roughness of the parameter in a sense that we want to be able to define.
 - We also want the capacity to estimate confidence intervals for the parameter or
 - for functionals $\rho(\beta_j)$ of the parameter.

Some basis function expansions for $\beta_j(t)$

 \bullet Let the regression coefficient vector $\pmb{\beta}(t)$ have the expansion

 $\boldsymbol{\beta}(t) = \mathbf{B}\boldsymbol{\theta}(t)$

where matrix **B** is q by K_{β} and the K_{β} basis functions $\theta_{\ell}(t)$ are contained in vector $\boldsymbol{\theta}(t)$.

• In the temperature example, it would be natural to use a certain number K_{β} of Fourier basis functions.

A roughness penalty for $\beta_j(t)$

- If the response curves in $\mathbf{y}(t)$ are rough, we may want to impose some smoothness on the estimated β_j 's.
- Let *L* be a linear differential operator, such as $L = D^2$, that defines variation $L\beta(t)$ that we wish to penalize.
- Our roughness penalty on $\boldsymbol{\beta}(t)$ is

$$\label{eq:pen} \Pr(\beta) = \int [L \boldsymbol{\beta}(s)]' [L \boldsymbol{\beta}(s)] \, ds \; .$$

Predicting temperature		
Estimating the		
Defining functional		
Home Page		
Title Page		
•• ••		
Page 15 of 26		
Go Back		
Full Screen		
Close		
01030		
Quit		

The penalized least squares criterion

• Let the response function vector $\mathbf{y}(t)$ have the basis function expansion in terms of K_y basis functions $\phi_k(t)$:

 $\mathbf{y}(t) = \mathbf{C} \boldsymbol{\phi}(t)$

• Then the penalized least squares function is

$$\begin{split} \mathtt{PENSSE}(y|\boldsymbol{\beta}) \; = \; \int (\mathbf{C}\boldsymbol{\phi} - \mathbf{Z}\mathbf{B}\boldsymbol{\theta})'(\mathbf{C}\boldsymbol{\phi} - \mathbf{Z}\mathbf{B}\boldsymbol{\theta}) + \\ & \lambda \int (L\mathbf{B}\boldsymbol{\theta})'(L\mathbf{B}\boldsymbol{\theta}) \; . \end{split}$$

Penalized least squares in matrix terms

• we need to define these three matrices:

$$\mathbf{J}_{\phi\phi} = \int \! \phi \phi' \;, \;\; \mathbf{J}_{ heta heta} = \int \! oldsymbol{ heta} oldsymbol{ heta}' \;, \;\; \mathbf{J}_{\phi heta} = \int \! \phi oldsymbol{ heta}'$$

and this roughness penalty matrix

$$\mathbf{R} = \int (L\boldsymbol{\theta})(L\boldsymbol{\theta})'$$

• The fitting criterion now can be expressed as $PENSSE(y|\beta) = trace (C'CJ_{\phi\phi}) + trace (Z'ZBJ_{\theta\theta}B') - 2trace (BJ_{\theta\theta}C'Z) + \lambda trace (BRB'),$

The normal equations for B

• Taking the matrix derivative with respect to **B** and setting it to 0 gives

 $(\mathbf{Z}'\mathbf{Z}\mathbf{B}\mathbf{J}_{\theta\theta} + \lambda\mathbf{B}\mathbf{R}) = \mathbf{Z}'\mathbf{C}\mathbf{J}_{\phi\theta}$.

 \bullet We can use the Kronecker product to convert expressions of the form ABC^\prime to

 $\mathsf{vec}\left(\mathbf{ABC}'\right) = (\mathbf{C}\otimes\mathbf{A})\mathsf{vec}\left(\mathbf{B}\right)\,,$

and consequently the normal equations become

$$[\mathbf{J}_{\theta\theta}\otimes(\mathbf{Z}'\mathbf{Z})+\mathbf{R}\otimes\lambda\mathbf{I}]\mathsf{vec}\left(\mathbf{B}\right)=\mathsf{vec}\left(\mathbf{Z}'\mathbf{C}\mathbf{J}_{\phi\theta}\right)\,.$$

• The estimate of B is therefore

$$\begin{split} \mathsf{vec} \left(\hat{\mathbf{B}} \right) \; = \; \left[\mathbf{J}_{\theta\theta} \otimes (\mathbf{Z}'\mathbf{Z}) + \mathbf{R} \otimes \lambda \mathbf{I} \right]^{-1} & (\mathbf{J}_{\phi\theta} \otimes \mathbf{Z}') \mathsf{vec} \left(\mathbf{C} \right) \\ & = \; \mathbf{S}_{\beta} \mathsf{vec} \left(\mathbf{C} \right). \end{split}$$

4. Defining functional probes or contrasts

- \bullet Estimating the entire regression function $\beta_j(t)$ is fine, but
- we want to focus our attention on local or specific shape features of $\beta_j(t)$, ignoring other aspects of the function.
- Perhaps, for example, we want to examine the behavior of the temperature coefficient functions in mid-winter.
- A functional contrast is of the form

$$\rho(\beta) = \int \xi(s) \beta_j(s) \, ds$$

where $\xi(\boldsymbol{s})$ is a suitable weight function.

• There no particular need for $\xi(s)$ to integrate to 0.

• When $\beta_j(s)$ has the basis function expansion

$$\beta_j(s) = \mathbf{B}_j \boldsymbol{\theta}(s),$$

where \mathbf{B}_j is the *j*th row of \mathbf{B} , the contrast becomes

$$\rho(\beta) = \mathbf{B}_j \int \xi(s) \boldsymbol{\theta}(s) \, ds$$

Predicting temperature			
Estimating the			
Defining functional			
Home Page			
Title Page			
44 >>			
Page 20 of 26			
Go Back			
Full Screen			
Close			
Quit			
Quit			

Some examples

• Point evaluation:

$$\xi(s) = \delta(s-t)$$

This simply produces the function value $\beta(t)$.

• Local behavior. Assuming that β is periodic, we can use

$$\xi(s) = \exp[(s-t)^2/(2\sigma)]$$

to assess the behavior of β in a neighborhood of t of a size determined by constant σ .

Predicting temperature		
Estimating the		
Defining functional		
Home Page		
nome r age		
Title Page		
Page 21 of 26		
Go Back		
Full Screen		
Close		
0,036		
Quit		

How do I work out confidence limits for these probes?

• The random element in a linear model is the residual function value

$$\epsilon_i(t_j) = y_{ij} - x_i(t_j).$$

- Any linear function of the data inherits it's variance from the variance of the data.
- The variance of the data conditional on the model is the variance of the residuals.

- We have two tasks:
 - Estimate the variance of the residuals for a single response. (The mean can usually be taken to be 0.) Let's call this Σ_e .
 - Assuming independence of the observations, the variance of the whole response data matrix is

 $\operatorname{Var}[\operatorname{Vec}(\mathbf{Y})] = \mathbf{\Sigma}_e \otimes \mathbf{I}.$

- Work out the linear mapping from the data to the probe $\rho(\beta_j)$ that is being estimated. Let us call this \mathbf{M}_j .
- The rest is easy:

$$extsf{Var}[
ho(eta_j)] = \mathbf{M}_j'(\mathbf{\Sigma}_e \otimes \mathbf{I})\mathbf{M}_j$$

How do I work out mapping M_j ?

- In the examples given, $\rho(\beta_j)$ is three linear mappings removed from the data:
 - The linear mapping from the raw data in matrix **Y** to the coefficient matrix **C** defining the smooth functions in $\mathbf{y}(t)$. This is

$$\operatorname{vec}\left(\mathbf{C}\right) = (\mathbf{S}_{y} \otimes \mathbf{I})\operatorname{vec}\left(\mathbf{Y}\right).$$

- The linear mapping from C to the regression coefficient function coefficient vector \mathbf{B}'_{j} . We worked this out already, and called it \mathbf{S}_{β} .
- The linear mapping from \mathbf{B}'_j to the value of the probe. This is

$$\mathbf{U} = \int \xi(s) \boldsymbol{\theta}'(s) \, ds$$

• Now we have it, namely

$$\mathbf{M}_j = \mathbf{U}_j \mathbf{S}_{\beta} (\mathbf{S}_y \otimes \mathbf{I})$$

- This process is easy to extend to probes $\xi(s)$ involving all regression coefficients.
- For example, the variance of vec [Â(t)] where t is a vector of values of t, is

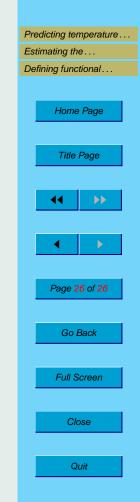
 $(\mathbf{\Theta}\otimes\mathbf{I})\mathbf{S}_{eta}(\mathbf{S}_y\otimes\mathbf{I})(\mathbf{\Sigma}_e\otimes\mathbf{I})(\mathbf{S}_y'\otimes\mathbf{I})\mathbf{S}_{eta}'(\mathbf{\Theta}\otimes\mathbf{I})'$.

where Θ is the matrix of values of θ at t.

Pr	edicting te	mperature	
Es	timating th	ne	
De	fining fund	ctional	
	Home	e Page	
		, ruge	
	Title	Page	
	44		
	•		
	Page	25 of 26	
	Go	Back	
	Full Screen		
	Cl	ose	
	Q	luit	

Some cautionary notes

- These sampling variances would only be "exact" if we knew Σ_e . The value of our confidence limit estimates depends critically on the quality of the estimate of Σ_e . There are many open questions about how to do this.
- We are assuming that the distribution of a probe is well summarized by its mean and variance.
- Our estimates are all conditioned on how many basis functions we use for both $y_i(t)$ and $\beta_j(t)$, namely K_y and K_β . Since we never know exactly how many to use, these should be regarded as random quantities, and a Bayesian treatment seems to be indicated.
- We should back up the use of these "delta method" confidence regions by bootstrapping and simulations.



5. Summary

- Regressing a functional response on multivariate independent variables or on a design matrix is not much different from the conventional regression analysis.
- One important difference is that we want to do *local* inference and interval estimation.
- We have, too, the capacity to smooth estimated functional parameters.
- But the number of basis functions that we use is not a fixed parameter in the traditional sense.

Predicting temperature		
Estimating the		
Defining functional		
Home Page		
Title Page		
•• ••		
Page 27 of 26		
Go Back		
Full Screen		
Close		
Out		
Quit		