Smoothing with Roughness Penalties

Why do we use Defining smoothness Penalized least Spline Smoothing Choosing the Confidence limits Summary Home Page Title Page Title Page Page 1 of 24 Go Back Full Screen
Penalized least Spline Smoothing Choosing the Confidence limits Summary Home Page Title Page Title Page Page 1 of 24 Go Back
Spline Smoothing Choosing the Confidence limits Summary Home Page Title Page Title Page Page 1 of 24 Go Back
Choosing the Confidence limits Summary Home Page Title Page Title Page Page 1 of 24 Go Back
Confidence limits Summary Home Page Title Page Itile Page Page 1 of 24 Go Back
Summary Home Page Title Page Title Page Page 1 of 24 Go Back
Home Page Title Page
Title Page
Title Page
Image 1 of 24 Go Back
Image 1 of 24 Go Back
Page 1 of 24 Go Back
Page 1 of 24 Go Back
Page 1 of 24 Go Back
Page 1 of 24 Go Back
Page 1 of 24 Go Back
Go Back
Go Back
Full Screen
Close
Quit

1. Why do we use roughness penalties?

- Controlling smoothness by limiting the number of basis functions is discontinuous; roughness penalties allow continuous control over smoothness.
- We want to be able to define "smooth" in ways that are appropriate to our problems.
 - We may want a smooth derivative rather than just a smooth function.
 - What is smooth in one situation is not smooth in another. Smoothness has to be defined differently for periodic functions, for example.
- We find that roughness penalty smoothing gives better results.
- Roughness penalties are connected to fitting data by a differential equation; they are models for process dynamics.

Why do we use
Defining smoothness
Penalized least
Spline Smoothing
Choosing the
Confidence limits
Summary
Home Page
Title Page
∢∢ → →
• •
Page 2 of 24
Go Back
Full Screen
Close

2. Defining smoothness

We have two competing objectives:

- 1. Fit the data well; keep bias low.
- 2. Keep the fit smooth so as to
 - filter out noise
 - get better estimates of derivatives

Mean squared error = $Bias^2 + Sampling Variance$

We can often greatly reduce MSE by trading a little bias off against a lot of sampling variance.

VVI	iy do we ι	ISE
De	Defining smoothness	
Per	nalized lea	ast
Spl	line Smoc	othing
Ch	oosing the	ə
Co	Confidence limits	
Su	mmary	
	Home	e Page
	Title	Page
	••	
	••	••
]	••	▶ ► ►
	••	>>> >>
 	 I Page 	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
 		→ 3 of 24
 		→ 3 of 24
 	Go	→ 3 of 24
	Go	3 of 24 Back
	Go Full S	3 of 24 Back
	Go Full S	3 of 24 Back
	Go Full S Cl	3 of 24 Back

Quantifying roughness

• The classic:

$$ext{pen}_2(x) = \int [D^2 x(s)]^2 \, ds \; .$$

 $[D^2x(s)]^2$ measures the *curvature* in x at s. This penalty measures total curvature.

• Curvature in acceleration:

$$\texttt{pen}_4(x) = \int [D^4 x(s)]^2 \, ds$$

• These two penalties also define what we mean by "smooth"; any function that has zero penalty is "hypersmooth." A straight line for the classic, a cubic polynomial for the acceleration penalty.

Harmonic acceleration

- If the process is periodic, it is natural to think of a constant + sinusoid as "hyper-smooth".
- This suggests that we use

$$\operatorname{pen}_{H}(x) = \int [D^{3}x(s) + \omega^{2}Dx(s)]^{2} ds$$

where $2\pi/\omega$ is the period.

• The functions $1, sin(\omega t)$, and $\cos(\omega t)$ all have zero penalties, as does any linear combination of them.

• Writing

$$Lx(s) = D^3x(s) + \omega^2 Dx(s)$$

we have

$$\operatorname{pen}_H(x) = \int [Lx(s)]^2 \, ds$$

Some questions to think about

- Can we think of other *differential operators L* that might be useful?
- If we have a small number of "hyper-smooth" functions in mind, can we find a differential operator *L* that will assign zero penalty to them?
- Can use the data themselves to tell us something about the right differential operator *L*?

14/by do we yee
Why do we use
Defining smoothness
Penalized least
Spline Smoothing
Choosing the
Confidence limits
Summary
Home Page
Title Page
Page 6 of 24
Go Back
Go Back
Go Back Full Screen
Full Screen
Full Screen

3. Penalized least squares estimation

- $-\mathbf{y}$ is the *n*-vector of data y_j to be smoothed.
 - **t** is the *n*-vector of values of t_j .
 - W is a symmetric positive definite weight matrix.
 - $x(\mathbf{t})$ is the *n*-vector of fitted values.
- The penalized least squares criterion is

 $\label{eq:pensse} \mathsf{pensse}_{\boldsymbol{\lambda}}(\boldsymbol{x}|\mathbf{y}) = [\mathbf{y} - \boldsymbol{x}(\mathbf{t})]' \mathbf{W}[\mathbf{y} - \boldsymbol{x}(\mathbf{t})] + \boldsymbol{\lambda} \, \mathsf{pen}(\boldsymbol{x}) \; ,$

- Smoothing parameter λ controls the amount of roughness.
 - As $\lambda \to 0$, roughness matters less and less, and x(t) fits the data better and better.
 - As $\lambda \to \infty,$ roughness matters more and more, and x(t) becomes more and more "hyper–smooth."

• x(t) has the basis function expansion

$$x(t) = \sum_{k}^{K} c_{k} \phi_{k}(t) = \mathbf{c}' \boldsymbol{\phi}(t)$$

• For the classic penalty,

$$\begin{aligned} \operatorname{PEN}_2(x) &= \int [D^2 \mathbf{c}' \boldsymbol{\phi}(t)]^2 \, dt \\ &= \int [D^2 \mathbf{c}' \boldsymbol{\phi}(t)] [D^2 \boldsymbol{\phi}'(t) \mathbf{c}] \, dt \\ &= \mathbf{c}' \int [D^2 \boldsymbol{\phi}(t)] [D^2 \boldsymbol{\phi}'(t)] \, dt \, \mathbf{c} \\ &= \mathbf{c}' \mathbf{R} \mathbf{c} \end{aligned}$$

• The order K roughness penalty matrix \mathbf{R} is

$$\mathbf{R} = \int [D^2 \boldsymbol{\phi}(t)] [D^2 \boldsymbol{\phi}'(t)] \, dt = \int (D^2 \boldsymbol{\phi}) (D^2 \boldsymbol{\phi}')$$

(1)

The roughness penalized estimates for c and y

- Φ is the *n* by *K* matrix of basis function values $\phi_k(t_j)$.
- The penalized least squares criterion becomes

 $\mathtt{PENSSE}(y|c) = (\mathbf{y} - \mathbf{\Phi}\mathbf{c})'\mathbf{W}(\mathbf{y} - \mathbf{\Phi}\mathbf{c}) + \lambda\mathbf{c}'\mathbf{R}\mathbf{c} \; .$

 \bullet This is quadratic in $\mathbf{c},$ and is minimized by

 $\hat{\mathbf{c}} = (\mathbf{\Phi}' \mathbf{W} \mathbf{\Phi} + \lambda \mathbf{R})^{-1} \mathbf{\Phi}' \mathbf{W} \mathbf{y}$.

• The data-fitting vector $\hat{\mathbf{y}} = x(\mathbf{t})$ is

 $\hat{\mathbf{y}} = \mathbf{\Phi} (\mathbf{\Phi}' \mathbf{W} \mathbf{\Phi} + \lambda \mathbf{R})^{-1} \mathbf{\Phi}' \mathbf{W} \mathbf{y} = \mathbf{S}_{\phi, \lambda} \mathbf{y} ,$

• Smoothing matrix $\mathbf{S}_{\phi,\lambda}$ maps the data into the fit.

14/1-1-1-1-1	
vvny ao v	we use
Defining	smoothness
Penalize	d least
Spline Si	moothing
Choosing the	
Confiden	ce limits
Summar	y
Н	lome Page
	Title Page
•	
	Age 9 of 24
Pa	age 9 of 24
Pa	
Pa	age 9 of 24 Go Back
Pa	age 9 of 24
	age 9 of 24 Go Back
	age 9 of 24 Go Back
	age 9 of 24 Go Back

Equivalent degrees of freedom $d\!f(\lambda)$

- It is useful to compare a fit using a roughness penalty to one using a fixed number of basis functions.
- A measure of the "degrees of freedom" in a roughness penalized fit is

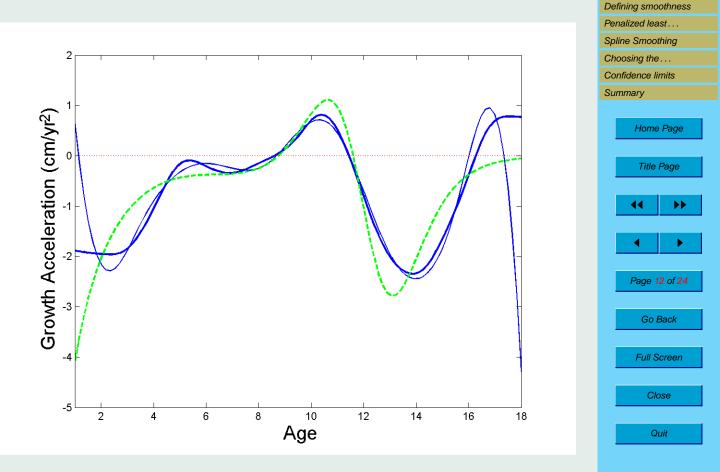
 $df(\lambda) = \operatorname{trace} \mathbf{S}_{\phi,\lambda}$

• This corresponds to the number of basis functions *K* in an un–penalized fit.

4. Spline Smoothing

- The term "smoothing spline" has come to mean the following procedure:
 - Use natural or B-spline basis functions.
 - Place a knot at each data point t_j .
 - Use a penalty on D^2x .
- However, we find that
 - We can often achieve the same results by just using a number K of basis functions that is "large" relative to the resolution of the data.
 - We certainly want to be able to play with alternative roughness penalties.
 - Other basis functions systems are also desirable.

Two estimates of an acceleration curve.



Why do we use ...

5. Choosing smoothing parameter λ

- In cross-validation,we
 - set aside a subset of data, the validation sample
 - call the balance of the data the training sample
 - fit the model to the training sample
 - assess fit to the validation sample
 - choose the λ value that gives the best fit

- We can also, for a sequence of values of λ ,
 - set aside each observation (t_j, y_j) in turn
 - fit the data with the rest of the sample,
 - sum fits to the left out values to get a cross–validated error sum of squares $CV(\lambda)$.
 - select the λ value that minimizes $CV(\lambda)$.

Generalized cross–validation for choosing the smoothing parameter λ

- Cross-validation is time-consuming, and tends too often to under-smooth the data.
- The generalized cross-validation criterion is

$$GCV(\lambda) = (\frac{n}{n-df(\lambda)})(\frac{\texttt{SSE}}{n-df(\lambda)})$$

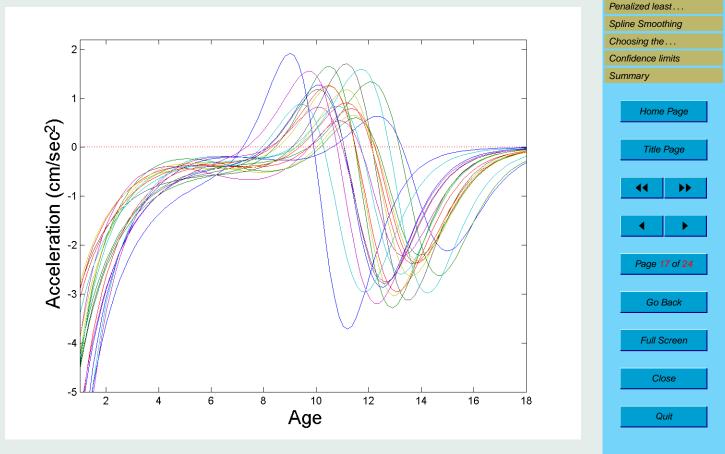
where df is the equivalent degrees of freedom of the smoothing operator.

- The right factor is just the unbiassed estimate s_e^2 of residual variance familiar in regression analysis.
- The left factor further "discounts" this measure further to allow for the influence of optimizing with respect to λ .

6. A simulation study

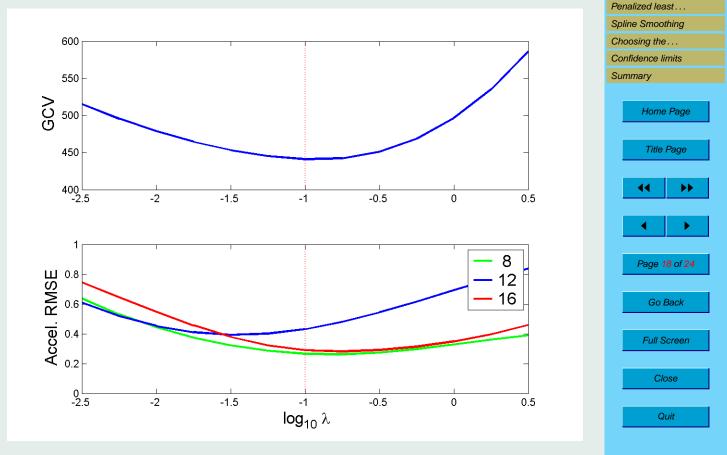
- How does GCV work in a simulated data example?
- A parametric growth model by Pierre Jolicoeur at the Université de Montréal offers a nice test problem.
- We simulate 1000 samples, each observation being a random sample from realistic Jolicoeur models plus realistic error.
- We smooth using a range of values of λ, and note the value giving the best value of GCV.
- How well do we estimate the Jolicoeur acceleration curves?

20 Jolicoeur acceleration curves



Why do we use . . . Defining smoothness

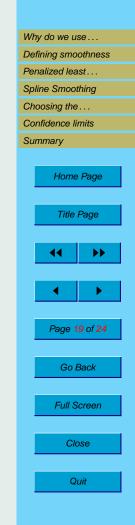
GCV and Root-Mean-Squared-Error



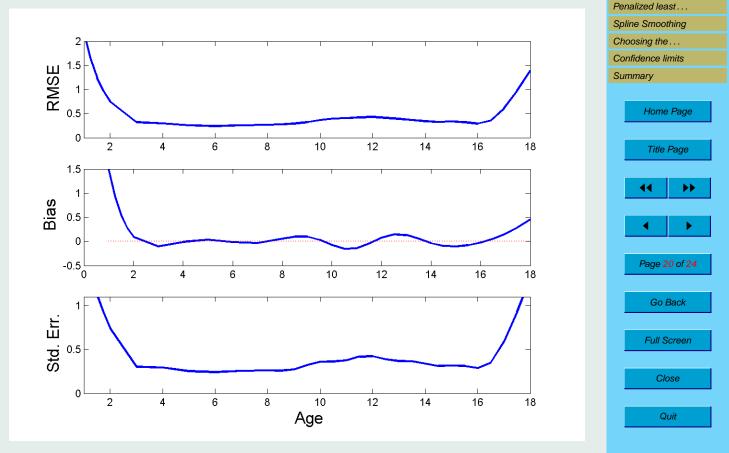
Why do we use . . . Defining smoothness

What we see

- In the top panel, GCV favors $\lambda = 0.1$.
- This is about right for optimal MSE for ages 8 and 16, but less smoothing would be better for age 12, in the middle of the pubertal growth spurt.
- One smoothing parameter value does not work best for all ages, but
- The value chosen by GCV certainly does a fine job.



RMSE, Bias, and Standard Error



Why do we use . . . Defining smoothness

What we see

- The performance of the spline smoothing estimate deteriorates badly at the extremes.
- The sharp curvature at the pubertal growth spurt also causes some problems.
- Except at the extremes and PGS, the bias is negligible.
- The standard error is about the same as RMSE.
- Would we do better at the extremes if the smooth respected monotonicity?

7. Confidence limits

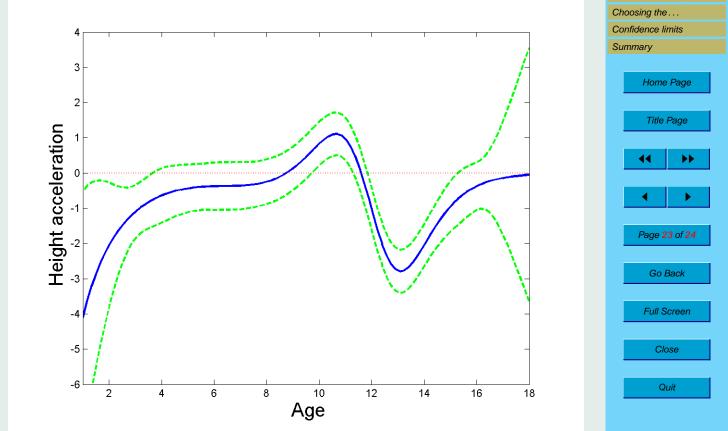
- Because the mapping from data y to the coefficient vector c is linear, it is a simple matter to work out the standard error of any linear functional of a curve defined by c.
- The variance of a quantity $\rho(x)$ associated with linear mapping ${\bf M}$ from $\hat{{\bf c}}$ to $\hat{\rho}(x)$ is

 $\operatorname{Var}[\hat{\rho}(x)] = \mathbf{MS}_{\phi,\lambda} \boldsymbol{\Sigma}_e \mathbf{S}_{\phi,\lambda} \mathbf{M}'$

• Simple, that is, if we can get a good estimate of the variance-covariance matrix Σ_e of the residual vector.

vvny ao we	400	
Defining smoothness		
Penalized least		
Spline Smo	othing	
Choosing the		
Confidence limits		
Summary		
Hon	ne Page	
Titl	e Page	
••	••	
•		
•		
↓ Page	22 of 24	
↓ Page	• 22 of 24	
	22 of 24	
Go		
Go	o Back	
Go	o Back	
Go	o Back Screen	
Full	o Back Screen Close	
Go Full	o Back Screen	

95% point–wise confidence limits for growth acceleration



Why do we use ...

Defining smoothness Penalized least... Spline Smoothing

8. Summary

- Roughness penalization, also called *regularization*, is a flexible and effective way to ensure that an estimated function is "smooth."
- We can tailor the definition of "smooth" to our needs.
- The roughness penalty idea extends to any type of *functional parameter* that we want to estimate from the data.
- Roughness penalties are one of the main ways in which we exploit the smoothness that we assume in the process generating the data.
- "Roughness" is like *energy* in physics; roughness requires energy to produce, and smoothness implies limited energy.
- Where we imagine that the amount of energy behind the data is limited, it is natural to assume smoothness.

